AD=ADB4 676 AEROSPACE CORP EL SEGUNDO CA ENGINEERING GROUP F/76 9/2
THE ECLECTIC SIMULATOR PROGRAM (ESP) USAGE GUIDE.(U)
MAY 80 E R COFFEY» H J WERTZ F04701=79=C=0080
UNCLASSIFIED TR=0080(9320)~1 SD =TR=-80-21

e 2 &

] - 22 msz

‘IU 36

TR
I""E m" 18

JlL2s Illll flie

. .
MICROCOPY RESOLUTION TEST CHART

NATIONAL BURTAL OF STANDARDS 1963-%

B REPORT SD-TR-80-21
;
.
3 (e
3 L
! <H
2 eC
| << Usage Guide
(o)
<
» EMMAGENE R. COFFEY
£ in Association with
HARVEY J. WERTZ | N
Mission Information Systems Division
: Engineering Group:
9 The Aerospace Corporation
i © El Segundo, Calif. 90245
3 1 May 1980
3
_;'? l Interim Report
Fe |
- APPROVED FOR PUBLIC RELEASE;
. DISTRIBUTION UNLIMITED
i | .‘a; - -
¥ THE AEROSPACE CORPORATION
' 3 Prepared for
{: > SPACE DIVISION
4 Q. AIR FORCE SYSTEMS COMMAND
! «© LOS ANGELES AIR FORCE STATION
g . < P.0. Box 92960, Worldway Postal Center
1 wJ Los Angeles, Calif. 90009
19 —
e .
D o v 80 5 27 -078

| EEL = E g o oo o g AN VYD WP

-~ i N

i .-
— - < g— R
roey s atia ,.,l“ B e . R Da ek L

s

UNCLASSIFIED

_SECURITY CLASSIFICATION OF TNIS PAGE (When Date Entered)

(49 REPORT DOCUMENTATION PAGE g EAD INSTRUCTIONS

.__REPO NUMBER

2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER

AMMA

’ SDHTR-8p-21

L™

USAGE GUIDE, z

L a0 Al et 4 A

*mmmw- B
@{JHE ECLECTIC §IMULATOR fROGRAM (ESP)/ Interim Report

T 5. TYPE OF REPORT & PERIOD COVERED

= 7-1-75 to 12-1-79

NUMBER

(4T TR-0080(9320)-1

7. AUTHOR(s) —

! Emmagene R./Coffey, Harvey J /Wert / @/{Fjﬂ?pl 79 C f)ﬁ%()

8. CONTRACT OR GRANT NUMBER(s)

T et im e e e

v e A o

\i;:(aronumc ORGANIZATION NAME AND ADDRESS

The Aerospace Corporation
El Segundo, California 90245 @

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBE S

1. CONTROLLING OFFICE NAME AND ADODRESS 12,
N 1 May 80
" PAGES

186 b

Space Division

14. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 18. SECURITY CL ASS. (of this report)

Air Force Systemms Command
Loos Angeles, Calif, 90009

Unclassified

1Sa, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

S
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if dilfersnt from Report)
N e T e —————— —— L - B

18. SUPPLEMENTARY NOTES

Simulation
Integration
Numerical Integration

19. KEY WORDS (Continue on reverae slde if necessary and identily by block number)

Ordinary Differential Equations Runge-Kutta Integration
\\Piscontinuous Driving Functions

Hysteresis Nonlinearities
Computer Simulation
Predictor-Corrector Integration

The Eclectic Simulator

differential equations.

20. \\BSTRACT (Continue on reverse side If necessaty and identity by dlock number)
collection of subroutines) that permits the fast, easy solution of ordinary

utilize ESP's many labor-saving devices to code a problem with minimal
effort, Special ESP features permit translation of engineering blocks, dis-
continuities, and hysteresis patterns directly into computer code, and the use

Program (ESP) is a system (a precompiler plus a

Any user with a general knowledge of FORTRAN can

oo FORM y4n3

(IFACSIMILE) 7~

// S UNC LASSIFIED
/ %cwmv CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

19. KEY WORDS (Continued)
Simulation Language

Precompiler
Matrix Expressions

! U < [

!

4 . %T (Continued)
of WHELP in conjunction with ESP facilitates efficient coding of matrix
algebra equations. Simple input cards enable the user to directly control
solution and timing accuracy and to specify or change run times, initial
conditions, and various other parameters easily when making multiple or
stacked runs. Finally, ESP allows the user to select from a wide variety

of output options. This manual is intended to be both a learning tool for
the novice and a detailed reference for the experienced user.)

/11

Py UNC LASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

O

-/

PREFACE

This revision of The Eclectic Simulator Program Usage Guide was

prompted by a number of modifications and improvements to the ESP package
which have been made since 1975. The primary reason for the changes was
the desire to have common versions of ESP and WHELP available on both the
CDC 7600 and the IBM 370, From the user's point of view this has been
achieved even though both WHELP and PREC@MP are written in PLI for the
IBM 370 and in FORTRAN for the CDC 7600, There were, however, a
number of changes required which will affect existing programs. The first of
these is a revision of variable and common block names. The second is a
revision and restructuring of the major subroutines to simplify program flow
and logic and to improve error control and handling of potential job abort
situations. The third is replacement of the former default integration algo-
rithm with the Shampine variable-order/variable step routine, which appears
to outperform the Hamming Predictor Corrector in both speed and accuracy

on a variety of applications tested thus far,

In effecting these changes to the ESP package, considerable effort has
been made to minimize changes required of the user. The only pervasive
changes affecting the user are the shortening of variable, subroutine, and
common block names to six characters or less and some rearranging of
common blocks, both necessitated by IBM FQRTRAN constraints. In general,
the contents of this guide reflect a CDC orientation with IBM counterparts
noted where possible, However, an ESP program written according to this
guide may be run interchangeably on either IBM or CDC by simply changing

the appropriate control cards,

In addition to revisions of all portions of this guide reflecting the above
changes, the appendix relating to WHE LP (Appendix H) has been greatly
expanded to include all current capabilities of WHE LP. Notice that WHELP
may be used with or without ESP, and thus Appendix H may be used without

o i w

R 8

reference to the remainder of the guide and is in fact the most complete

current documentation of WHELP,

Hopefully, this will be the final major rewrite of both the software
and the documentation. In particular, this edition of the manual has been
designed for easy updating when the inevitable (wishfully small) changes are

made to the software,

kot

vi

. —eean w— "
¥
<
» f
CONTENTS
£ I, INTRODUCTION . . « v v v e v e aee s e e eeeneeen 1-1
II, SOME SIMPLE EXAMPLE PROBLEMS 2-1
A, Example 1 . . ¢ i v i v v bt e e e e e e e e e e e e e e 2-1
B. Example 2 . . v v v 0 o v ot e e e e e e e e e e e e e e 2-2
Step 1. Statement of the Problem c h e e e e 2-2
. Step 2. Analysis of the Problem. ¢« ¢ v v . & 2-3
Step 3. Coding of the Program C e e e e e e 2-6
Step 4. FQ@RTRAN Version of the Program , 2-7
Step 5. Output of the Program . . . « « v o ¢« « « & & 2-16
111, DEFINING DERIVATIVES ., ¢« ¢« v ¢ v o o o s o o o o o 3-1
A, Defining the Derivatives as First-Order
. Differential Equations « . ¢ ¢ ¢« ¢ s s 0 ¢ o o 3-2
’ B. Defining the Derivatives in User Variables 3-3
C. Defining the Derivatives as Engineering
Blocks (*BLOCK) . . . v v v s v v o s s o s oo v e vos 3-5
‘ & IV, INTEGRATION PACKAGE ¢ s ¢ ¢ ¢ s o v o o o s o o o s 4-1
; A, GeneralInformation . v « v v o ¢ ¢ ¢ ¢ ¢ o o o 0 o o o o » 4-1
g 1- OptionS ® 8 e & ® 85 s e 6 % e e & e+ v e s C s e e 2 4'1
. 2. Stepsize Selection . . « + ¢ v ¢ v o s ¢ o s e 00 oo s 4-2
3. User Control of Stepsize ... v v v v ¢ v o v o o o 4-2
. 4, Controlling Solution Accuracy. . « + « « o » « o« o » 4-3
Ty B. Adams Integration ¢ v 0 e e e e v e e 00 e -
C. Runge-Kutta Integration . . . + « « ¢ ¢ ¢ ¢ ¢ ¢ v v ¢ v 4 & 4-6
. 1, Fixed Stepsize . « v v ¢ v ¢ ¢ o ¢ s o o o o s o o o o 4-6
o 2, Variable Stepsize ¢« v v v v ¢ 4 0 e 0 0w 4-6
3. Error Control , v v v v v e v o v o o o o o 4-7
4, Inputting Values at Discrete Intervals , , 4.7
L - asuags []
v -
: vii
s

VI.

D. Predictor-Corrector Integration
1. Variable Stepsize
2. Fixed Stepsize « . . .
3. Error Control . ,

DISCONTINUITIES .

CONTENTS (Continued)

A, Detecting a Sign Change (*SWTCH)

B. Hysteresis Nonlinearities (*SWMEM)

1,
2.
3.
4

Defining Input to a SWMEM . . .
Defining Output of a SWMEM .,
Defining the Characteristics of a SWMEM . . .
Initializinga SWMEM , . ,

C. Locating Events which Do Not Affect Integration . .

D. SWTCH's and SWMEM's:

lo

Zo

E. How the Switches Work

Extended Usage

Alternate Ways to Define SWTCH and
SWMEM Inputs.

e & o ® o o & o s o e

User-Written Functions, .,
User-Written SWINPT and SWMEMN, ,

User-Computed SWTCH and SWMEM Output ,

e o & *

F. Controlling Timing Accuracy of Discontinuities
(*HSW, *HSWM, and *HSWE) . . .

OUTPUT

A, Printed Output: Automatic Formatting

2,

» » 2 8 o s s s » s s » o .

viii

Printing ESP Variables (*PRINT)

Printing User Variables or Computing Output
(*@UTPUT...*ENDQUT)

Accuracy of Printed Values

e & o e o

4-9

4-9
4-10
4-10

5-6
5-7
5-7
5-10

5-10
5-12

5-12

5-12
5-14

® CONTENTS (Continued)
B. Graphic Output v ¢ v v v v v 0 e 0 o 0 s o v e
1, Storing Plot Data
2. Plotting Output (*GRAPH) ¢ ..
E . C. Printed Output: User Formatted ¢ 4 e e e e
- - D. Data File OQutput ¢ ¢ v ¢ ¢ v v ¢ 6 v 0 ¢ 0 v v s
; 1. Data Written onto TAPELl .,
i 2. Data Written onto User-Named File
VII, INPUTS . . . it i i 4 e v s s o 6o o o o o o o o s o s o o o o
F A, Number of Derivatives, Start/Stop Times, and
Print Intervals (*RUN) . . ¢« & ¢ ¢ ¢ ¢« ¢ ¢ o ¢ o o « » »
}_. B. Initial Conditions: Known Constants (*IV)
a C. User Parameters: Known Constants (¥*PAR)
.. D. Initial Conditions and Inputs to be Computed
(*(ICCOMP. .. *ENDIC) . & ¢« ¢ v ¢ v ¢ ¢ s s o o o o o &
E. Data Input from Cards or User Files
F, Inputs to Control Accuracy+«
G. Miscellaneous Inputs. ¢ . ¢ ¢ v v v ¢ o v o s
1, Print Headings . . . « ¢« ¢« « v ¢« ¢ v ¢ o ¢ o o o «
2, Title for PrintedOutput
3. Program Control ¢« . ¢« ¢ v v v o s v v @
APPENDICES:
i‘ A, CARD FORMATS AND DECKSTRUCTURE « . + .+
’,
B. CONTROL CARDS AND FILE USAGE . . ¢ ¢ v v v s ¢ o« o &
. C. PROGRAM VARIABLES AND RESERVED NAMES .,
,. D. PROGRAM CONTROL AND EXECUTION . . . v 4 ¢ ¢ ¢ o o« &

)
i

3 |
32 CONTENTS (Concluded)
1
. E. INTEGRATOREQUATIONS v o s v oo nveueeeo. E-1

F. SPECIAL CASES: MULTIPLE RUNS AND LARGE
SIMULATIONS . .+ 4 v v v v v v v v v oo v v v nsonnwes. F-l

G. DEBUGGING SUGGESTIONS ¢ v v v o o o o s o s s G-1 i

H . WHE LP L) . L) L] . L] . . . L] .

REFERENCES . . 4 4 v v v ¢ s o o o o o s o s o o ¢ o o o o o o o o I-1

INDEX & 0 0 i 4 e 6 e s s 6 o s o o o o 8 a8 s s 23 s a s s s s s s . J-1 *
- 1
{
o

z)
j !

FIGURES
1, Step Sequence for Starting Procedure .,
2. General Form of SWMEM Nonlinearity, . .,
3. SWMEM Characteristics o e e e e
t. .

xi

AN A AN | AM)

I. INTRODUCTION . & v i v v i v et e vt o e oo s e v s o s 1-1

. T R LAY A e ML R T T L 4o e il MY BB e ¥ ¢ S e T

SECTION I

INTRODUCTION

The Eclectic Simulator Program (ESP) enables the user to solve
ordinary differential equations with speed, accuracy, versatility,and mini-
mal effort. The user codes only that information unique to his particular
problem: the differential equations, initial conditions, and desired output.
This information must be coded in ESP language, which is a special purpose
programming shorthand developed just for this program, and documented in

this manual. ESP then does literally all the remaining work,

To accomplish its purpose, the ESP system is composed of two parts--
a precompiler and a set of FORTRAN subroutines, The precompiler reads
the ESP shorthand code written by the user (This code will not look like a
FORTRAN program.) and translates it into FORTRAN, while adding the
necessary cards (such as COMMON block, DIMENSI@N statements, and
RETURNS) to produce complete and executable FORTRAN subroutines, The
output of this precompiler is then joined with the second part of the ESP
package, the subroutines which do the integration and other chores, to forma

: complete FORTRAN program which is then executed by the computer.

ESP is not only highly efficient in terms of both user's effort and com-
puter running time, but it is also highly flexible., A number of special capa-
bilities, labor saving devices, and alternate means to the same ends are part

: of the package; however, the user has considerable latitude in deciding which
K features he will use and how large or how small a problem he wishes to solve.

Briefly listed below are some of the distinctive features and capabilities of
ESP:

. The derivatives are normally defined as first-order differential
- equations, but may instead be translated directly from engineering
block diagrams to *BLACK cards without any intervening algebra,

%

1-1

O 1 ST T RS AL A L o it B A O

The basic integration algorithm is the highly efficient SHAMPINE"
method, which combines variable stepsize with variable order
integration in response to continuous error checks, but the user
may opt to run ESP using any of several other integration algo-
rithms, namely, second- or fourth-order Runge-Kutta, or
Predictor-Corrector (which uses Runge-Kutta as a starter), any
of which may be run with either a fixed or variable stepsize.

Significant sign changes, discontinuous driving functions, hyster-
esis nonlinearities and the like may all be accurately and easily
coded into the system by means of special ESP language command
cards,

Output from an ESP program may take many forms, such as auto-
matically formatted print, user-formatted print, calcomp pen
plots, printer plots, microfilm plots, or magnetic tape files,

Since inputs such as initial conditions, run times, and parameters
can be easily changed, a series of runs or a set of "stacked" runs
can be made with a minimum of effort,

The user can directly control the degree of accuracy required for
the problem solution and also for the timing of discontinuities
with simple input cards,

Vector-Matrix expressions can be used in their natural form to
compute derivatives, by using WHELP along with ESP,

This manual attempts to meet the needs of both the novice and the ex-
pert user of ESP, It is hoped that sufficient explanation and examples have
been given in Sections II through VII to enable the uninitiated to write a suc-
cessful program. On the other hand, considerable detail has been included
throughout to aid all users in answering their own questions and debugging

their own programs.

Section II includes a straightforward example of ESP usage, from
problem definition through printed and plotted output. Careful study of this
example and its annotation should give the user a helpful overview of how

ESP works and how the various parts of user-coding relate to each other.

>'<Referx'ed to in this manual as ADAMS because it is an Adams-like method
and SHAMPINE is too long for a FORTRAN name

o S

vy —
.‘ N

Following this example, material is arranged topically by sections, one
section for each major aspect of setting up an ESP program: defining the
derivatives, selecting the integration method, modeling discontinuities,
specifying output, and defining input. Each section begins with an overview of
the capabilities relating to the section topic, and then discusses each in detail,
starting with the simplest and most basic usage and progressing to more

complicated options and considerations near the end.

It is strongly recommended that the user's first attempt at coding ESP
involve a fairly simple problem or a simplified version of a larger problem,
and that more complex aspects of ESP be added only after the basic ones are
well understood and seem to be working properly. In keeping with this

approach, it is suggested that the user study the example problems (Section II)

and read the first few pages of each of Sections III through VII before attempt-
ing to code his first problem. Later parts of Sections III through VII and the
Appendices may be regarded more as reference material and used only as
needed, although particular attention should be called to Appendix D, Program
Control and Execution, for those who wish to understand more fully how

ESP works. The Table of Contents and Index should facilitate easy location

of any other material of interest.

1-3

-
R
; II. SOME SIMPLE EXAMPLE PROBLEMS . . + « v v v v v . . .o2-1 Eg‘ \
. -
A. Example 1 e e e e e e e e e e e . 2-1 3o
b 20
§ i B. Example2 2.2 ,“_’E
.' m
§ <
4 Step 1. Statement of the Problem c e e e e e 2-2 ®
Step 2. Analysis of the Problem. 2-3
Step 3. Coding of the Program e e 2-6
Step 4. FQ@RTRAN Version of the Program 2-7
Step 5. Output of the Program . . . « « v « « ¢« « v o 2-16

e, il e N e T o s B E et B it e e RS T ey et

P

SECTION II

k. SOME SIMPLE EXAMPLE PROBLEMS

3 To aid the user in obtaining an overview of how ESP works, this section
ks consists solely of two example problems. The first is a very simple or

minimum problem and includes the statement of the problem and the coding
4 required to solve 17 using ESP, The second example is slightly more com-
plex and is fully discussed from problem definition through analysis, coding,

and resulting printout,

A, EXAMPLE 1

7 Problem: Integrate the following differential equations from t = 0 to
] t = 10,0-sec, printing t, Y, and Y every 0,5 sec:

Y cos 8 Y + Bt

Y =Y+sinfY

where
all initial conditions = 0,

¢ 6
e B

0, 4%t
0.142

Coding:
[Control cards--see APPENDIX B]

e PR,

. *DERIVS
. THETA = 0.4*T
! DY(l) = COS(THETA) * Y(1) +0,142*T
DY(2) = DY(l) + SIN(THETA) * Y(l)
*ENDDERIVS
' *PRINT TIME = T$Y = Y(1) $ YDOT = Y(2) $$
_— *RUN 2 0, 0.5 10.0 §$

Gor -+ ¢ . el 3 S A M e AN 1 T L e NS X o S 1 e B - e i

B. EXAMPLE 2

j - This example will be presented in detail from problem definition through
| to the output of a completed program in five steps. Step l is the statement of a
problem as the typical user might define it. Step 2 shows a step-by-step
analysis of this problem and translation of its characteristics into ESP code,
while Step 3 illustrates the actual arrangement of this code. Steps 4 and 5
are provided by ESP and show the FORTRAN output of the precompiler and the
actual printed and plotted output requested by the user,

F'o Gl Yl s +a Y .
1.0 4 3 |
—> - "

- I s+b s2+2¢ws+w2

STEP 1: STATEMENT OF THE PROBLEM

Integrate the above system from T=0, to T=0.5

| Inputs: G, = 5.0

‘ 1
‘ G, = 1.0
. a =20,1
| b =0.01
! =o0.5
) w = 1,0El
’ s All initial conditions = 0,

2-2

Outputs: Print every 0,02 second the following values and labels:

Time = T
Error = 1,0 - G,Y

273
Output = Y3

Plot: Output versus Time

Error versus Time

STEP 2: ANALYSIS OF THE PROBLEM

1, The number of integrations required (3), the run interval and the print

interval will be specified on the *RUN card

*RUN3 0,0 0,02 0,5 $ [See Section VII-A]

Input constants will be input on a *PAR card and equivalenced to their
names in the equations so that later they may be easily changed,

(PAR(l) = G, = Gl = 5.

PAR(2) =b =B = 0,01

PAR(3) A =0,1

PAR(4) ZETA = 0.5

PAR(5) O®MEGA = 1.0El

L PAR(6) G2 = 1.0

2
by using *PAR 5, 0.0l 0,1 0,5 1,El1 1.0 $ [See Section VII-C]

3. represents the following characteristics:
input = 1,0 - G2 * Y

3
If input £ 0, output = 0,
output If input > 0, output 1.0

To detect the exact point at which the value of input changes sign and to
set the proper output, the *SWTCH feature will be used:

*SWTCH 1 1.0 $ 0, $ 1.0-PAR()*Y(3) $

[See Section V-A]

4, G is equivalent to S.{'l = Gl *input-b*Y (1) where
1
—- Yl input = SWCH1 which is the value resulting
+b
2 from the *SWTCH statement,

This will be coded as

DY(1l) = G1*SWCH1 - BxY(l) [See Section III-A]

v Y is a second-order block which is equivalent to

1 5 s ta 5 | .3 Y, = Yl[(s+a)/(sz + 2¢ws +w2)]
s +2lwstw

This could be solved for '5{3 in terms of its auxiliary function Y2 and coded as

DY (2)
DY (3)

A*xY(l) - QMEGA##2*Y(3)
-2, 0%ZETA*@QMEGA*Y(3) + Y(2) + Y(1)

but it is faster and easier to code it by using the *BLQ@CK input feature
*BLOCK 2 1,0 A 2,*ZETA*@MEGA @MEGA#%** Y(3) Y(@2) Y() $

[See Section III-C]

6. Printing and storing of plot data will be done by using the *PRINT

statement
*PRINT TIME=PLOT(1)=T $ ERROR=PLOT(2)=1.0-PAR(6)*Y(3) $
OUTPUT=PLOT(3)=Y(3) $ $ [See Section VI-A-1]
7. Printer plots with all default features will be generated by using

*GRAPH 1 3
OUTPUT VERSUS TIME [See Section VI-B-2]

*GRAPH 1 2

ERRQR VERSUS TIME

8. A title will be assigned to all output pages by using the *TITLE card

rf. *TITLE EXAMPLE FOR ESP MANUAL
. [See Section VII-G-2]

e b
R B

Caaer . iaa ik o

‘uoneyduiod
uns 18y4e S301d 93npoid YoM SpIed 8ys SI 3

UnJ Yowre Jo $I15118)0018Yd 9y} Ajraeds yaym
‘198N 8y) Aq pepiaosd ‘spied 8wmn-uni, ey st

Indina oy vo 81 € 8InpoId [pM D

AndLno w!t:ﬁtnbm 40 802 ay1 w0} 02
pos; eq /M 4oy d, oy 1 g

'SAINIA INILNOYENS jo
8102 oy} s® pesn !:. 2-\&»&0& o \._2&2::
89 Inm yary ! p oy st v

‘wei1bosd opduwodesd 4§33 eys AQ ueIm
st Bupoo yuenbesqgns yy 19sn ;o Ewﬁioa V4NYONIS NI0P pue
IQWII0f PIRI 18X S SWel yIns b Y sy | o | ebey

WYY90UHd IHL 40 ONIGOD € d31S

©J3S 820° = IHIL

Aq pawuy
dW0O3Ud faPOMIM [| ot ovaa dmasn 3nL

IUIL SNE3IA d0¥E3 J
S T HdVa9x
INIL SASY¥IA INdING
€ T Hdvudx |
G9°0 20°C 0 £ NNndx
$ T 1I3°16° 1° 10" 9 dvdx |
dWOD3Hd Aq pajuly h._bn_zH d3lv1 ¥04 2T3dvi OL Q3Id0J 3dv MO Q3LSIT SQUVD GNY 3A0SY Quvd 3IAL

IVONYH dS3 304 3TdHYX3 3WLTLx |
$ ¢ (£)A=(£)107d=1ndINC
$ (£)A%(9)AVd-0"T=(2)101d=d0843 § L=(T)ILOTd=3RIL LNI&d*
SAIHIACNI* |
$ (DA (2)A (E)A 2xxV9IWO0 VOINOxV1IZx"2 ¥V 0°T 2 MNJ01ax
(T)Ax G- THIMS » 19 = (T)AQ
(SAIY3Q U1 1ndino ‘| gNIMS W1 paandwod aq ||im indul) _Hm (E)A%(9)UVA-0"T $ “0 ¢ 0°T T HILMS%
((9)18Vd*29)¢((S)UVdVINR0) ¢ =
((HIYVL‘VLIIAZ) (LAY VI ((2)avd a1 ((T)dvdT9) IONITVAINGI
SATHIOx

dNOD3d Aq pajung _HAKS ¥380190 £° dWO3¥d 009L

ime . s R L

2.6

G

‘yoop eys jo bujuuibeq ey
18 pedeyd @G PINOYS 31 ‘UMO S1y S8}IIM 185N Byl §Y
dNPIINd Aq Ajeipus ueum Ajjewiou st wesbosd uew sy

Suipod s, 9sn syl woiy s8pdworesd
oY) AQ uepUM seunnoiqns Eﬂthtﬁk o Suwuunibeg

WVYHO0Yd INL 10 NOISYIA NVYHIUPL ¥ JILS

a3asn KIS 8000L%
8y 809 HISN3T ¥342n9
91 91 HLISN3T Wvasodd
SITLSILVIS

3 IIds3 0 SAI¥3a
0 diNKaVY 0 SKHvavy
SYV 3IdAL STVYNY3LX3

2l3dvie 02 TIadve 0 iNding 0% 1NENI 02
3aoH SIAVN 3114

NIVH 99
SINICH AdiN3

(I=¥) dVvK JINIYIL3Y IIT08HAS

QaN3
(dINHQV¢ SHVOV*SAIN30)IIdS2 1V
diNKQV¢ SHYQV‘SAI¥3IQ TVHY31X3
(1Nd1N0 “2T3AdVLI=INdNI ¢213dVLi ‘TT3IdVLINIVHW HWviooad 1

60°H5 €T 6L/L0/90 26549°H N14 T=1d0 94/9L NIV Hvas0oad

‘abaxyoed uoneiberus ey AqQ perenj|ere pue

Poj1ed 8q |1 Asy) s® pu® JWPBIIYD Aq PBISISUB)
ue8q 8asy Aoy} se JUOWIBES BAIIBAIIGP S,16SN 8y}
40 Juojeainbe NVHIY@ 8yl 018 g u0nIBS UI SPIED

‘wesBord gs3 yaee 104 (wonueps 818 Aoyl 'dNGI I 03sSn WIS 9000LY
AQ Ajei3ue uepiIm 81R) pue Yy SUOIII8S Ul SPIRID [iYY €98 a1bs HISNIT NOWHOD 03738V1 HIS
L2 1% HLISNIT Hvd0ud
‘SOYINMS jf@ JO SJILSILVLS
Indino eyy sewndwos y pue ‘peresbejul 8q o) 84w ey
SOAIIRALIBD I8 JO SUORIUOP Oy} SUIBILOD SUIINOI SIY) MMM mzwmum

HLON3T S$X3079 NOWWOD

sivd Tvad viiz ¢ ‘d"4 Avawy Ivay A0
3 OVDNFL 2f “d*4 QIsnN= T3y L0
13y THOMS 1€ SHOIMS AVEdY V3 HOUNS 0
SHILMS AvaddY W3 KIS 29 *d"d QIshnne 3y dolS 0
suvd Avadv vy dvd 0 savd W VOO b
SHOLMS ¥ISIINI INIAIN € SHOLMS YIOIINI SMSXVH 2Lf
SHOLMS ¥I9AINI WIMXVH €L Suvd AAEL] s
savd MEL 1 0 dtd Avaey 3y A0 o
suvd 3y a1 suvd 3y v 2
NOILV013¥ 3dAL NS S31GVIAVA
SAT¥3Q € ®
SINIOG ANIN3 ~

(1=¥) dVH 3IN3IU3IJI3Y JIT0GHAS

aN3)
NunL3d 9
(2xxVOINOIX(£IA-(V) = OVDIL = (2)AQ
(VO3LURVLIIZX-2)%(€)A-(0°T) » OVONFL + (2)A = (€)AQ
(TIA = OVDNrL ot
(T)A% 8- THIMS = 19 = (TIAQ
*LdNIMS INILNAOYENS u! peindwod si Indu) *0=T HIMS(0°37° (T JHILMS)AI

“4ouMS 40 IndIno saandwiog | 07 T=T HIMS(0°19° (T JHILMS)AI 8
((9)UVd* 29} ((G1EVd*VI3KO0)* »
((5)AVdYLAZ)¢ ((£3UVA VI € ((2)avd D) ((THAVATO) IINITVAINDA s
HVd/SHVA/NONID =
INIATIN*HIUXVH SMSXVH® { ¢ 08)NIHMS (05 IHILMS/SHILMS/NCLHOD
(00T)dVd ‘(00T)IAQ *(00T)A NOISNIHIG | V
(OLS*AGA*1)SAT¥3Q INILAONANS | 1

1 9vd 60°95°€T 6L/L0/90 2GH+9°H NAd T=1d0 9L/9L SAIY3A INILNOHENS

SAIH3A 3N ans a3sn WIS 900049

ur pe)ndwod S| SBYINIMS 858Y} JO INTINO 8Y[€5¢ a1v9 H1SN3IT NOWNOD G3136VT WIS
SPI9I HILMS. U0 18Sn 8ys AqQ pepod ueaq arvy ot 21 HL9N31 Hvd20¥d
38y} S8YIUMS AUR O} Sinduy By SOUIJBP § UDHI8S SIILSTLIVAS

‘dNPIIHd Aq A19iIUe UBPIIM 018) pUB VY SU0NIeS
001 Sdvd

‘posn s Aue 0} sindui ey} seuijep 8uUNNOI S €52 SHILNMS
P HILMS+ ¢ 4op i HL9NIT S$32079 NOWHOD

‘d*d AVyaY Ivad A C
‘d"d Avydv Ivad SAMVA © ‘d*d Q3aSNKN= vy 1 0
SHIIMS Avadv vad HILMS 0 SHILMS Avydv A FL H3MMS 29
sivd Avdyy Iv3ay dvd 0 SHILMS ¥3I0IINI INIA3N L€
SHILMS d393ANI SMSXVIW 2Lt SHIOiMS Y39IINI HIUXYH £L%
NOILvI013d 3dAL NS S3IIBVIUVA

1dNIMS €
SAINIOd AdINI

2-9

(T=d) dVW 3IDNINII3Y IIT08HAS

GN3
Nanl13y
(L)A%(9)dVd-0"T=(T)S3MVA | 8 S
Uvd/SUVd/NOWIN0D
ANIAINHIHXVIHC SMSXVH® (©¢ 85)IHINS ¢ (65 IHILMS/SHILMS/NCI U0
(00T)HAVd “(00TIA “(0S5)SINTVA NOISNIHICQ v
(A€L*SIMIVA)LJINIMS 3INILNOHENS I

(&)

25549°H Nid T=1d0 9L/9L 1dNIMS 3NILNOHSNS

60°95°¢T 64/L0/90

dWPIIYd A

Aros3ue ueyim ‘eunynos Buiyzou-op 10 Awwnp @

§7 ounnos 8y} ‘o1dwexe S|y} Ul pesn 818 suou eduls
‘POsSn SIWINMS. Aue 03 syndus ey) seupep esunnos siyy

a3sn KIS 8000L%

1334 atvs H19H3T NOKWCD §37139V1 WIS
} 9 9 HLIN3T Wvasodd
J SI14SILVIS
001 Suvd
£42 SHOLMS
HISHIT1 §%J0718 NOWWGI
d"d Aviny vy A0
d-d Avany v3y samva o d"d a3IsnHN vy Lo
SHILMS AvadV vay HOLMS 0 SHOLMS Avadv vsy WS 29
S¥vd AV Ivay Uvd o0 SHO1MS ¥IDAINI INIAIN ®LE
; SHOLMS ¥393INI SMSXVH 2.8 SHILMS Y39IINI MWINXVH €€
) NOILVI013Y 3dAL NS $37aVIAVA =)
‘ -
NS € ~
: SINIOd AYIN3

(1I=3) dVvid 3ON3d343d IIT0QHAS

anN3
N¥nL13y S
YVd/SEVD/NIRHOD
ANIFAINHIHXVHC SMSXVH (H¢0G)IHINMS ¢ (05)IHILMS/SHILMS/NCHINOD
(QOTHIdvd ‘(00TIA “(0S1S3NTIVA NOISNIUIQ
(A ‘L *SINTIVAINAIKMS 3INILNOYENS T

1 39vd 60°H559 €T 6L/L0/90 255497 % N14 1=1d0 94/9L NH3KMS 3NILNO¥ENS

Y e Lt b AT 2 7 e AN A i 0 Bl g

‘suononnsur ebss0)s Joid pue
Jugd $.10SN 9y} JO UOISIOA Esxht&m oy} suiepuod g
G3SN WIS Y000LY

314 aTvs HLSNIT NOHKO3 G3136VY WIS
dWPITUd Aq uenpm eie 3 puw y suonIes o1 891 HLSN3T HVYES0dd
SIILSILVIS
‘Bunyoyd 104 peiols 00T suvd
ue pojuuid 0q 03 seneA @ SeuIjop eul,
pue pejut q o3 1OA 8Y} jop sunhos siyy £52 SHOLHS
HLON3T SX20718 NOMHOD
‘d*4 AVHNY vy Ao ‘d°4 I3y 10
SHILMS AVEYY vy HOIMS 0 SHIINMS AVyY Ivad HIUMS 29
‘d 4 (E Y I3y dois o ‘d"4 Avaav v3d INIdd 0O
‘d-4 AVHAY vad 100d o savd Avaay B} EL] dvd ©
SHOLMS ¥393INI INIAIN b2 SHILMS ¥393INI SMSXVH 2.%
SHILMS ¥3931INI W3WXVH €2€ *d°d AVdNY vay AQ O
NOILV2013d 3dAL NS SITAVIAVA
—f
ndino € —
SINIOd ANUN3 '
o
(T=8) dVW 3ININIAIY IIT10SHAS
anN3™)
Nun13d |2
(£IA=(£)107d=(§ IINI¥d™]
(£)A%(9)8Vd~0"T=(2)10Td=(2)INIdd | @
1=(T)101d=(T)INIZd S
UVd/SUVd/NOHE0D]
ANIAINHIHXVH CSMSXVH® (4 ¢ 09 JHIHMS “ (0F JHILMS /SHILMS /NCHIHDD
(00T)AQ “(09)INI¥d (00T)L0Td *(00TIAVA ‘(00TIA NOISNaWIa |V
(dOLS*AINIdd*101d AQ A LIINALND INILNONENS T
1 39vd 60°55° ST 64/L0/90 7GH19°H NI T=1d0 9L/9L 1Nd1N0 3NILNONANS
- - | IS b e -—

‘dNQIINd AqQ Ajoinue usiiiim sem pue
R sunnos Buyiou-op 10 Awwnp e Ajpisw si spyy ‘wolqosd
! SIy) 10} POPBBU B818M SuONEBINAUIOT [BNRIUI OU BIUIS
‘QUIINGS SIYL §O 1Bd S8 UBIIIM 8 IIM LNPOANT PUE
dWQPIDI. UsBMIOq pBpNIIUL Buipos 18sn Auy ‘senjea
40 suonIpuo? jenjul papeau Aug 8indwod 03 uOINIBXE
wesbo0sd jo Bujuuibeq oy} e 92u0 pejIed S1 sunnol sy

a3asn WIS 90004%
901 8251 H19N3T Wvasodd
¥ SJILSILVLS

‘d*d Avydy vad A O
‘d°d Q3ISNNN* vy 10 43ANN* Ivay dvd 9
NOILVI013Y IdAL NS SITVIYUVA

3 dHO2dI £
SINIOd AHINI

2-12

(1=¥) dVH IINIY3I43d IIT0EHAS

aN3

NunL3y

(00T)AVd(00T)IA NOISNIXIQ
(A¢l) dHOJI3I 3INILINOHENS 1

60°H9°¢T 64/L0/90 26949°9 NL4 1=1d0 94/9¢L dHOJJ2I 3INILNQAKNS

1e11-In ¢ £94SE SNNE
w|I-n LS H9£SE god3arx
1e11-10 S91 LL1SE GOJN3
IBI1-10 9T 210s¢ HdvYD
18I11-In 9595 bETL2 XHdva9
1911-1n 9901 950932 2HdvEI
1e11-I1n 29 99,52 /dR4VES/
|- 1 £9252 /HASL0Td/
191110 92T §£952 HdIIVIS
Q|- 2L £4552 €0163¥
1811-10 %02 L£€52 diruay
181110 LT 142 SHYOV
18I1-I1n 9§ SHEE2 IHOLMS
1811-10 s¢2 05052 LINIMS
19170 22§ 92£232 4ZN33S
W|IT-I0 221 L2012 119d$3
9I17-1n 0 £L012 /¥vdils/
18911-1n &9 %0012 101ds3
18IT-In HIT 02902 IN3ds3
91l JSIHMINZ 191110 ob2E 059ST 11dS3
ut dS3 AqQ paijddns s300(q UOWWOD pue SAUIINOL 1911-1n 1 2258t /¥dSIaN/
wer-n 1t 929ST /9080NS/
18I1-In 2501 YSEHT /UVdHIS/
1°11-1n 1 £SE9T /Z1NOOMY/
911N LS HLIET 72ISVe/
1911~10 S L99ST /NODJdLS/
1911-1n 1S0T 91921 ~13ISIN/
D B T) 2T92T /ZNHXVHK/
1e11-30 T2 0921 /2dINV
18I171-I0 0S1 1£221 /TdINN/
1811~ 099 23 /7%ivas
1817110 1% 0££2 NIINIL
: 1817-10 &€ £222 ANTENIT
! 1811-1n e 1522 T4dINS
] I~ 1€ 0222 NI
: wen-~mn 1 Lr22 708433/
4 1911~ 9¢ 1912 ¥HILX3N
7 1817~ HIg 5991 Qo33d
b 1¢911~1n 121 v2ST IV
i 1e11-I1n S91 LEST 1rQvay
2 \. teI1~in S21 2121 /NIGV3Id/
m 0N 25t 0401 €1023I
1 091 91 z20t 1n41n0
$ 091 9 »101 NAZIS
; 091 2T 2001 1aNINS
m apo2 s,4asn Woly JWODIIHd >n uanlam ssunnod A o9 c¢ ibL sAI®aa
i 18171-1n o51 £09 /s8vd/
» 1911-0 S€ 902 /SHILMS/
M . o 9L o1t NIVH
3 14 HISNI1 Ss3Idaay %2019
m
i 0 HION3T MO 1055S HLONIT WIS (ur) NIVH 1V Q3¥31N3 3@ TN WVa9Dud
M T 39vd °SE°%S°€T 6£/£0/790 0°T NOIS¥3A ¥3avOl dVH QVO01 3d0D3S
K
i

3

e

PO

R

e

39vd

SUIINOJ WAISAS

g17LO0TdNL4E Woly
papeo) :6umio|d 10} 453 Aq pasn sauiznos

CGECHGCET 64/7L0/90 0°T NOISU3A ¥3QvOl

Ve

\
\

X14504-7S
X1¥03-1S
X1823-1S
X1434-1S
X1¥24-1S
X1d043-78
X1¥04-7S
X13094-1S
X1804-18
X1204-18
X1¥804-18
X1804-1S
X1¥04-18
XLu04-1s
X1&03-18
X1804-78
X1&04-18
X1¥04-1s
X1¥04-1S
X1d04-18
X1¥04-18
X1¥04-1S
X1¥04-1S
X1¥04-1S
X1¥04-1S
X1d04-1S
X1¥04-1S
X1404-1S
X1804-1S
X1¥04-7S
28I1-1N
28I17-10
28171-1N
2g811-1n
29IT-1N
2811-1n
2213-1n
<a1I-1n
2917-1n
<g171-In
2dI1-In
<g11-1n
23171-1n
2911-In
23I7-1Nn
2aI1-1n
2g911-1n
28I171-1Nn
2€I1-1N
28I1-1n
<aI1-1n
28I71-1N
19171-710
1917-1n

9t£€
L

€92
29¢

90099
£0059
L9L6S
9421
2996S
$29%5
0CHhS
He2vs
L00bhS
[23 3%
€£992¢s
04%25
bb12s
qlLte
£EHTS
0L€1s
H2LTs
14509
9L10S
19944
£0SLy
sHvlYy
225.Y
qgeLy
T12LY
I£TLy
0ETLY
2LL9Y
L9l 9y
0L
01494
H1eoY
1509
L9%4Y
20sHy
L2EHY
090%%
9Lesh
S91¢Y
18624
£142y
1£91
LTy
L9LL8
01sL¢
£52L8
231LE
L0TLE
L9958
§§48¢
[2 VA1
HLHS5E
0968g
o8vas

avon

S0V
AuvHzy
=¥30109
=33073
HIL1SAS
=CHIMEY
=k024N0
=110
=41no
=YINVEA
=43C0A
=JcNI
=QdNT
/°3n8°01/
=HOONI
=114139
=141NL04
=SASHO4
=dViW4
=1no4174
=NILS
=HSHI34
403
=714GH3
=3CIONI
=0IW0J
=ANINED
/°01°gb/
/°3°124/
/UN3 " d1S/
QECH3IN
RELER
Q39N39
4409
/44na7d/
Wvdd401
108HAS
HAS1d
1NCHId
Aviuvd
/3NCNId/
213A31
T13A37
qQucols
Q39<01
QESNIT
XXuvdd
S3IVLd
$107d
107NN
/R01VY/
HISINWN
=HALSAS
S1N3A3

340238

[~ §°0 20°0 0 £ NNix
. $ °T 13°16° 1" 10" °S Hvdx |g
Jasn Aq g uy sped IVANVH dS3 804 31dWVX3 31LILx
‘dNODIHd Aq ualalim aJe vy Ul spaed :4S3 Ag palunlg | $ indino oyl IHIL SSNIQVIH=
0 INJWILMSH
— T S3HILIMSx |V
(¥1404-15 21 L9%55 9UYHAN “
X1804-15 L 09555 =h0LX —
X1&d4-18 129 05455 =J01X 7..
X1¥34-18 29 99g9S 18T=S\S
{(3u0d) seunnoJs walsAg (X1d¥04-1S T 49¢8S =QIvSAS
X1¥24-1S 9b L1855 1ubs
X1&04-1S HL £2c99 =SOONIS
X1404-18 9 |026s =(0A1
X1¥04-1S 00t §01S§ dx3
€ 39¥d °"SEHSTET 64/.0/90 0°T1 NOIS3IA ¥3QvON dvyud dQVo1l 3d403S

‘SYVS 8y 58 Jowi0p dwes oy} us perusd
8G jim ABY) "0JOZUOU 818 SONIEA [BiN1Ul Auw
H dS3 Aq uns Arane 104 Ajeonewcine pesupd.

o &,

s1 eBed siy3 uc eiep jw Indino qof jo Buuuibeg

WVYHIO0Nd IHL 40 LNLLNO '§ d3LS

00+30000000°T = (9)dvd TO+3000C000°T = (S)¥vd
10-30000000°S = (b)dvd T10-30000000°T = (£)Advd 20-30000000°T = (2)Jdvd 00+30000000°S = (T)avd
S3NTVA dvd OHIZNON
0d3Z 34V SANTVA Al 11V
99-30000000°1 = S3MVA MSH 1V ”m
]
N
01~20000000°T = S3AMIVA d 1Y
.05—.— BCO;-W& 90-30000000°T = 3NTVA Sd3
8 1M dWODD| WOy 1asn ey Aq parutid eeq —»
9 = G3AINI¥d STVNIDO3Q
10-3000000000°S AV SONR3 NOILINNO0S
20-3000000000°2 = IVAN3LINI JNOINI¥d
‘0 1¥ SNI939 KROILIMOS
IVOANVH dS3 804 3TdHVX3 6L/L0/90
LL6T LSNONV 60 W31SAS 3HIL-NNY II-dS3

L1 3dVL 03uO UM Ajlemde sjulod 10id Jo Jequinu = | LdVIN
(0 = L s3pn|au)) pa:01s spulod 10]d o sequinu = Sid 101d

uaxel sdals uonesbarul Jo JAQUINU = d1ISIWNN

pasn azisdals wWNWILIW = 4d34SNIN

pasn azisdals wnwixew = 43 1SXVYIN

awn uonNJBXs jenioe = IWIL

dS3 Aq Ajjeanewoine pajulad
pue pa1ndwod aie sajqelseA asay |

65 *Sld 101d es d1SHNN 60-3081T°T d3ILSNIK 20-39T9L "¢ dILSXVH

©J38 L20° = 3IL

£ T HdV¥O=

"dS3 Aq pajjoauod
Ajjeanewolne si 1ewio) (18sn Aq paiyioads 1nding

20-3T22¢45°S
20-3%522¢9°S
20-366201L°S
20-3919¢8L°S
20-38814%8° S
20-31LL568°S
20-3515¢26°9
20-3581926°S
20-3555168°S
20-3999818°9
20-380T004°S
20-395208S°9
20-35.150¢°9
20-30£9120°9
20-3255649°%
20-3810082°%
20-3692.28°¢
20-3£020€8°¢€
20-36£4%009°2
20-31€9252°2
20-394T20L°T
20-3T4288T° T
£0-39L62H2°L
£0-32L6HL0°¢
$0-322£0%¢°6
0

ind1ino

T0-38499H%°6
T0-3S4L9¢9°6
T0-30%682%°6
T0-3€£912%°6
T0-328251%°6
10-3€2501H°6
10-3699.0%°¢
10-320SL0%°6
10-359801%°6
T0-3££TCIY6
10-368562%°6
T0-395699H°6
10-3£8469H°6
10-3LT8L6%76
T10-3%%02€5°6
10-3866TL5°6
T0-3£22L19°6
10-30£6999°6
T0-39556TL°6
T0-3L8LHLL°6
10-3282638°6
10-3£41188°6
10-3045226°6
10-3052596°6
10-3099056°6
00+3000000°'T

-1 LE)

AVANYH dS3 ¥04 31dNVvX3

106-3000000°S
T10-3000008° %
T0-3000009°%
T10-300000%°%
10-3000002°%
10-3000000°%
10-3000008°¢
16-3000009°¢
10-300000%°€
10-2000002°¢
10-3000000°€
10-3000008°2
10-3000009°2
10-300000%°2
10-3300302°2
10-3000000°2
10-3000008°T1
10-3000009°1
16-300000%°T
10-3000002°1
10-3000000°T
20-3000000°¢
20-3007000°9
20-3000000°¢%
20-3000000°2
‘0

3UIL

64/7L0/90

Aonwo“o.o

10-3008° % 10-3009°¢

v v

T0-300%°2 10-3002°1

v

v

suondo 3 NeJep ({8 YIIM PUBWWOD
HAVHO Buisn 1ndino o1ydess jedidAy

3NIL SNSA3A 1N4INO

v

m——mmae R R

£0-3
000°8

20~3
009°1

20~3
00%°2

20-3
002°¢

20-3
000°%

20-3
008°%

20-3
009°S

20-3
00%°9

20-3
002°L

20-3
000°¢

20-3
008°¢e

20-3
009°6

2-18

———— bl A 55 Bt s .

Buioyd Joy pasinbes awn *23s 9590° = 3IWIL

10-3000°9 10-3008°% 10-3009°€ 10-300%°2 10-3002°1 ‘0

v v v v v v

*
* * 10-3
oHH°6

* 10-3
»* 0258°6

10-3
* 009°6

10-3
089°6

* 10-3
09L°6

» 1c-3
» 0v8°6

* 10-3
» 026°6

*n 00¢3
wxxnn 000°T

00+3
800°1

00+3
910°1

00+3
520° 1

00¢3
280° T

JHIL SNE3IA BOYN3

aid S . "

4 66¢ STV 1IVIIY - LI *Z4H L89°T00G0 29°65 €1
£9% ST1IVD ¥3ISYNVH 203ND - 9LLHY ‘244 £87°10000 29°95 €1
60¢ $11¥2 SNINOILISO4/1081HOD MG - SLLMd ‘240 239710000 2995 €1
181 STIVD ¥I4SNVHL VIVA WE - $2LWN *Z41 £89°100C0 2995 €1
‘eiep aji} Aep |ew.IoN A L S11V) SNINOILISO4/10dLN0D - €LZKY *Z4H 589° 10000 29°45° €I
19%4s ST1IVD YIASHVAL VIVA - 2LLMH *Z3H 989°1086C0 29°95°€1
0§ S$T11v) 3S012/NId0 - TLLKY *241 989710000 29°96°€1
L 6 $37I4 IAILOV WAKIXVH - 0L/KY *244 989710000 2995 €1
) - 1y3A38- ‘001 699° 10000 I%° %5 €T
*8dAAAANSHLARAAA *N2N13d- *G07 H59° 10000 09 05 €T
HAI=1S66=dd% LNdLNO* 3S04SIa~ *G0r £69°10000 09" 95 €1
* $HOD¢ 410N~ *007 S29°10000 0% 66 €T
T - do3 T - s03 185 - ¥03 - ggo1n *¥SN 929710000 05" 95 €T
Q3¥3ANNOJNI 103 - TE0iN *YSn £29° 10000 0% 55 €1
* INLIND*HLAAAAK ¢ AdO3- ‘G071 LTS 10000 6£°95°E1
aWIL NOILNI3IX3I SGNOJ3IS dI 400° ‘HSN LIS 10000 65 96 €1 *
dois *dSN 919° 10000 6£° %5 €T H
LL/LT/TT 926 AYVNQIT Nvalyod *HSN £TS° 10000 6£°95 €1 <
‘qof 4S3 ue 10} pesn Ajjew.iou (%=090 ‘N=N ‘100=100 - "80r 605°T00C0 6E°95°€T ¥
10U :uoneaiqnd 104 Bunsy SR 4020 ‘wxxwc$xwxxs ‘TOLS=TIALS ‘= “TISV=TISY - *Q0r 60§ TO0CO 6£°66°S1 3
MR 1SS Cxmai/wnnn/wnnn/VGIN=I5IN A=V ‘LUOSV “INDLNO)IUIAAAAA- *007 €05 10000 6£°H5° €1 :
alesouab 01 pesn spied 0nUOD je10adg *WLAAAAA ¢ INJLNO* GNIMIY- *G07 £6%° 10000 6£°95°€1 .
1 - do3 1 - s03 189 - ¥03 - sgo01n ‘¥SN 264710000 6E°$5° €1
03N3LINNOINT IDI - TE0IN *¥SN T6H 10000 6€° %G €1
“HLAAAAA ¢ LNDLNO* AdOD= *007 £5£°T0000 6£°HG €1
T INdLNJ aNINIY- *007 ©9£° 10000 9£°96°S1
*INDJ¢3813 *¥SN L9£°T0000 €L HG €1
INOJ (109 80°SV ' LON" ‘1NdIN0)3TI4¢ 34T~ *Q07 SHE°T0000 BE° 4G €T
W3ILSAS=NS WOdd QIHOVLILY 2 31040 - $524d *Z4d HHE 10000 GE°HS'ET ©
*$Z9TT=AI AINIUJARE BdAAAAA ‘HOVLLY- g90F 6££°10000 LE°05°€T N
ALITILN INI¥4: " " *IN3KKOD- *80r 2L T0000 LE°96°EST oy
fr\ (A=SSV1IVSIN=TSAVHI* INILNC) ANI YD~ *007 612710000 SE"HG° €T
ﬁ 3INIL NOILND3IX3I SANGDIS d2 260° .TdSN 6T2°T0000 SE°9S°ET
1Ix3 *dSN 8T2°T0000 SE°HS E1
dsatT Sdvi® *¥SN £2T°T0000 SE°S°€1
8L/60/20 299 ABVHIIN Nvalod *¥SN 921" 10000 SE°9S €1
dX3°S0 QILVILINT NOIINDAXI - £09G1 *244 S2T°T00C0 SE°HG €T
902°N0 0£E££200 - GVO1 OL A3¥IND3Y S14 - 0TSAT *Zad £2T° 10000 SE°9S°E€T
‘091~ *Q0Y £92°06000 ST %S°ET
3HIL NOILVIIQHOD SONOJ3IS dI £6%° *¥SN 99£°00C00 9T HG €T
*ONCSHI=T*MLd~ *GD7 52700000 60°HG°€1
INIL NOILND3X3 SANOJIS dI 0£0° *¥SN £52°00000 60°HS €T
‘009Z Q) uo 8520 di02384 aua “¥SN £42°00000 60°H5 €1
82/60/20 26b AEVE9IT Nvdl204 *¥SN 222°0G000 60°H5 ST
8|dwexa unJ 0} pasn sp.ed |0RUCY dX3°S0 Q3ILVILINI NOILNI3X3 - £09Q1 “Z414 222700000 60° 95 €T
902°N0 0EEE200 - GVO1 OL Q3¥IND3d S14 - 0I5A) *24M 022°CC000 60°HS €T
*d10333d- *GOT $%0°0GC30 S0°9S €T
©29I1 TSI T AAVEIIT- *GOr 920°0C000 L0°§°€T
K3IL1SAS=NS WO¥4 G3IHIVLIIV ST 31240 - $§24d *Z44 §20°00000 L0°$S €T
*8I1107dNL4S 28T HOVLLY- *gOr 020°000C0 L0°65°€T
HILSAS=NS WO¥4 Q3HIVLIY 9T 31DA2 - $62id *Z3H 610°00000 £0°t5 €1
*dSIEMINI TAITHOVLLV~ *€Or $T0°C0CJI0 20° %S €1
T212£5 £S%981S1dSITL02TV rOLISELSST 90950 r H ‘21331)1KN0JIV~ *GOr 850700000 £0°6G €1
TOLN ‘TOLW *0002d* Z4W1S‘LSQTV~ 244 200700000 £0° G €1
. 6L/10/50 v%GOVI9% 2° T 38/SON %% "VIHN'85°65°0T

NI9I&J GNOJ3S NdJ SS WM Hit
[02¢=8XH “02T=TIXH NOFT=SXH %H9L=1Td N002=S14d 4d/b /618 S3IIIAIA SAS

QsT6L 6L/7L0/90 * 3-042 TAT 1°2 24025 000Z d¥03 3AJIVdSO¥IV »

- P

-

*3|13 Aep |ewIou JO uoieNUNRUOY)

2L0°0
o/1 & §°2

+ s22°0

+ SILNNIUH NdD * @ + JH

338
J3s
SMH

MW
S

+ 9"

86L°0
nJ

Sd¥MS 21/28 259000 -

169°1
621°0
£10°0
620°0
SH5°61

60¥0J23d HONNd LNOSAS 0

6Qd033¥ ANIdd LNOSAS ©

3IHIL G3SdV13 SILANIH 00°0

av3iy sqavd 1S9

==-=~= GIILISILVIS 80f 2SI —===--

0503S
sor
y¥asn
SHY
0/1
H3S

*Z4d
“24W
“Zdu
*Z4u
“Z4H
*23u
*24H
"ZIN

689°10000
689° 10000
689°10000
689°10000
§89°10000
€89°10000
£89°10000
289710000

2H"HS L1
2H°HS LT
2h oS¢l
2H 95 ¢l
2bHS el
2 98°ET
2H HSET
25°95°¢1

2-21

s A i, TR T N RS S

DEFINING DERIVATIVES .,

Defining the Derivatives as First-Order
Differential Equations

Defining the Derivatives in User Variables .

Defining the Derivatives as Engineering
Blocks (*BL@CK)

SECTION III

DEFINING DERIVATIVES

« The most important segment of coding which the user must provide is
that which defines his derivative equations. This segment will be translated
i by the precompiler into SUBRQUTINE DERIVS which is then called as

] needed by the ESP integration package for each evaluation of the derivatives,
; The user, therefore, must code his equations in a manner that can be recog-

nized and properly interpreted by ESP. There are several ways to do this,

and the user can choose the one or more ways most suitable to his problem

% : from the following alternatives:

_” e The derivatives may be written as a set of first-order differential
equations in terms of the ESP variables Y (i), DY(i), and T,

- e The derivatives may be written in terms of the user's variables
o ’ and their values then "moved" into the ESP array, DY. (This
option is particularly desirable--frequently necessary--if
WHELP expressions are used to compute the derivatives,)

e The derivatives may be written as *BLQCK statements, which
permit direct and simple translation of engineering block diagrams
directly into code that ESP can interpret,

In any case, all derivatives must be defined within a section of coding
which begins with the card *DERIVS starting in column 1 and is terminated
¥ with the card *ENDDERIVS, also starting in column 1. This section of coding
;, may be placed first, after any user supplied subroutines, or it may be placed
after the *ICCOMP., .. *ENDIC or *UTPUT...*ENDOUT sections. (See
' Appendix A-3 User's Deck Structure.) In addition to the derivatives, this
] section will contain any *SWTCH or *SWMEM cards used (See Section IV

Discontinuities,),

A, DEFINING THE DERIVATIVES AS FIRST-ORDER
DIFFERENTIAL EQUATIONS

SUBRQUTINE DERIVS is written by ESP from the segment of the user's
coding beginning with the *DERIVS card and ending with the *ENDDERIVS card,
It will receive from the integration package the value of the independent
variable T and the vector Y containing the values of each ith integral and must
return to it the vector DY containing the derivatives of each corresponding
Y(i). Therefore, certain points must be kept in mind in coding the derivative
equations:

e [Each equation must be solved for some Y so that it can be

written in the form DY (i) = some expression, one DY(i) per
integrator required,

e The variable T is always the independent variable. (Its range of
values is specified on the *RUN card explained in Section VII-A,)

e Y(i) should always be assumed to represent the result of integra-
tion at the current value of T,

e DY(i) may appear on the right-hand side of an equation if it has
been defined above. [If derivative equations interlock, i.e.,
DY (1) = function of (DY (2)), DY(2) = function of (DY (1)), these
equations must be solved, either analytically or numerically to
remove the interdependency before trying to integrate.]

® Variables other than T, Y and DY which are used in the expres-
sions should be PAR's (see Section II-B, STEP 2-2), or
variables defined in some way within this program segment,

¢ The exact number of derivatives to be integrated must be indi-
cated on the *RUN card, explained in Section VII-A,

e To skip a derivative at any time, simply set DY (i) = 0, but make
certain that neq, specified on the *RUN card, corresponds to the
largest subscript of DY used, even though it is desired to actually
integrate fewer derivatives,

The general form of the derivative equation coding is

DY(i) = some function of (T, Y, DY, PAR,
constants, user variables)

e — -

KA e .
L AN e oL 1 Sl 5 A 2 reris

EXAMPLES:
1. 6 =9 +5.0t 2DY(l) = Y(I) +5.0%T
2. Y +bY = G,(T-2.0)=DY(1) = -B*Y (1) + GL*(T-2.0)
or DY(l) = -PAR(1)*Y(l) + PAR(2)%(T-2.0)
3. ¢ =6 +2.0¢ DY(l) = Y(2) 4+ 2.0%Y(1)
6 = 0.5¢ + COS(9)| ~|DY(2) = 0.5%DY(1) + COS(Y(2))
4, Y+ 2twY +w?Y = a +b cos (w)

where a = 10,, b = 3., wy = 0.05, £ =0.5 w = 2.,

DY(1)
DY(2)

Y (2)
10,0 +3.0%COS(0.05%T)-2, *0,5%2,0%Y(2)-4,0*xY (1)

B. DEFINING THE DERIVATIVES IN USER VARIABLES

Alternatively, the user may code his derivative equations using his own
variable names if he especially wishes to keep them more easily recognizable
or if he plans to use vector-matrix expressions coded in WHE LP variables,
To do so, however, he must place within the derivative segment but before
the derivative equations, statements to move each integrator output (Y (i))
that he plans to use into his own variable location. Similarly, after his
equations, he must move the values to be integrated into the DY vector, This
may not be done with an EQUIVALENCE statement, because Y and DY are in
the calling sequence of SUBRQUTINE DERIVS, and this would be a violation
of FOQRTRAN rules. It may be done using simple replacement statements or
SUBRQUTINE MQ@VE, whose calling sequence is

CALL MOVE (A, N, B)

A is the first storage location from which data is to be moved,
It may be specified as A(i), A(i,j), A(i, j, k), or simply A
implying A(l,1). Data will be transferred by columns,

N is the number of consecutively stored values tobe moved.

is the first storage location to which data is to be moved,
specified in the same way as A,

EXAMPLES:
- *DERIVS
1. 6 =yt+ 6 THETA = Y(l)
. = 4 THETADT = Y(2)
Y = b6(t-5.0) GAMMA = Y(3)
THTDTDT = GAMMA*T+THETADT
GAMMADT = PAR(1)*THETA*(T-5, 0)
DY(l) = THETADT
DY(2) = THEDTDT
{ DY(3) = GAMMADT
*ENDDERIVS
r *DERIVS
2. z = 2.0%z - 3.5%¢, DIMENSI®N PHI(3), PHIDQ@T(3)
_ C MQVE Ys INT® USER VARIABLES,
= ¢1T + cos ¢, Z = Y(l)
= CALL MQVE (Y(2), 3, PHI)
¢?2 = ¢,T +sin ¢, C COMPUTE DERIVATIVES,
_ ZDQT = 2,0%Z - 3,5%*PHI(1)
p; = ¢, T +cos ¢ PHID®T (1) = PHI(1)*T + COS (PHI(2))
J PHIDOT (2) = PHI(2)*T + SIN (PHI(3))
PHIDOT(3) = PHI(3)*T + COS (PHI(1))
C MOVE DERIVATIVES INT® DYS.
DY(l) = zD@T
CALL MQVE (PHIDOT, 3, DY (2))
" *ENDDERIVS
*DERIVS
3. A(3,3), B(3), C(3) COMM®N/USERBLK/A
& =AB — | *IDECLARE A(3,3) B(3) CDOT(3) $

CALL MQVE (Y(1), 3, B)
CDOT = A*B
CALL M@VE (CDQ@T, 3, DY(1))

*ENDDERIVS

[Note on example 3: Refer to Appendix H on WHE LP]

C. DEFINING THE DERIVATIVES AS ENGINEERING
BILOCKS (*BLQ@CK)

Since engineering systems are often described by block diagrams (as in
the example case, Section II-B) a special command card *BIQCK can be used
to define the integration represented by a block diagram so that the user need

not translate its contents into the form Y = some expression.

A block diagram of this form is commonly used to represent a first

order filter in an analog system:

B T
- €n ~ s +8 ~ vy

It means simply that the output of the block equals the contents of the

r. block multiplied by the input, or in this case

. 1
v = ey <W5>

where 1/s represents an integrator, Solving this to remove the s, we get

y(i) (s +B) = e,

n

or y(i) +B8*Y(@{) = e

or
y(i) = e, -B¥y()
This could now of course simply be coded as

DY(i) = € - Bxy(i).

However, the whole process of manipulating the variables (and thus possibly

introducing errors) can be avoided by using the special format:

*BLOCK 1 B y() e §

3.5

-~ T R NI - W B SR G L N I

where

denotes a first order block

B is a constant (which may be any legal F@QRTRAN expression)
written without embedded blanks

Y(i) is the dependent variable name for the output of the block

s e. is a FORTF AN expression for the desired block input (It may
n have blanks within it, and is terminated by the dollar sign.)
$ is the required terminator.

All items are separated by blanks.

Second-order blocks can also be specified directly by using *BLJPCK 2.
Thus, a block of this form

e s * % . which is equivalent to
in 2 YV - a.c -B.Y. -
s+ Bs + By Y, = oepe tage - BY -By Y,

can be coded in this format:

*BLOCK 2 ¢ o, B, B, Y(i) Y(j) i $

1
where
2 denotes a second-order block
a).aq By By are constants (which may be any legal FGRTRAN
i expressions) written without embedded blanks
}
! Y(i) is the dependent variable name for the output of the
block
* Y(j) is another dependent variable name for an inter- "
mediate variable [It will not be the derivative of Y(i)] |
in is a FORTRAN expression for the desired block input
(It may have blanks within it, and is terminated by the
dollar sign.)
24 $ is the required terminator.

All items are separated by blanks,

3-6 :

0".

NOTE

Variables used in *BLOCK statements must follow the same
rules as those used in DY(i) = ... statements since all *BL@CK
statements are translated by the precompile program into equi-
valent equations of the form DY(i) = ...

EXAMPLES:
1
1. Y (3)= — -—Y{(4)

*BLOCK 1 0.0 Y(4) Y(3) $

1

2. Y (2)*PAR(7)= Y2

Y(3)

*BLOCK 1 OQMEGA*Z Y(3) Y(2)*PAR(7) $

s +1

s2 +5.0s + A

3. 3. 0Q me

Y(2)

*BLQCK 2 1.0 1.0 5,0 LAMBDA Y{(2) Y(3) 3.0:x@MEGA $

| Al AN 1 NG A L M - it M 1 A

1v. INTEGRATION PACKAGE e e e e e e e e e e e e e e 4-1 _
A, GeneralInformation . . . « v ¢ v ¢ v o o o ¢ o o o o o o » 4-1
. Options . . ¢ ¢ ¢ v v v v v e et e e e e e e e e e 4-1

1

2, Stepsize Selection ¢ v e o0 4-2
3. User Control of Stepsize .,
4

. Controlling Solution Accuracy. . . . « . . « « « . . 4-3

B. Adams Integration . . « ¢« v ¢ ¢ 4 ¢ ¢t e v b e 0 b s e e 4.4

C. Runge-Kutta Integration « ¢« ¢ v v v v v v o w 4-6

1. Fixed Stepsize . . . v v v v 4 ¢ 4t v 4 0 v v v v v o 4-6
2. Variable Stepsize v v ¢ v i v i v u .. 4-6 ‘
3. Error Control ¢ ¢ i v v v v v i v v v v o 4-7
4, Inputting Values at Discrete Intervals ., , 4-7
D. Predictor-Corrector Integration . . ., 4-9
1. Variable Stepsize e e e e e e e e e e 4-9
2. Fixed Stepsize ., ¢ . v v v v v v v e e 4-10
3. Error Control ¢ . . v v v v v v s e e v 4-10

FOVIOVd NOILVHOILNI Al

T T 0~ A KA OIS W e NI DI it AN S B g TR e i

SECTION IV

INTEGRATION PACKAGE

A, GENERAL INFORMATION

B The basic integration package provided by ESP uses an algorithm known
as Adams integration, which combines variable stepsize with variable order
integration to provide a highly flexible and efficient problem solving capa-
bility, Three alternative integration packages are also available and may be
selected at the user's discretion: they are fourth-order Runge-Kutta, second- !
order Runge-Kutta, and Hamming fifth-order Predictor-Corrector (which]
uses fourth-order Runge-Kutta as a starter). Each of these alternative J
integrators may be used with either a fixed or variable stepsize. (An expla-

nation of the various algorithms used may be found in Appendix E.) !

1. Options

Adams integration will be used unless overridden by the user, To
select one of the alternative packages, simply place the following card before ;

all others in your deck:

*METHOD name

: where

*METHOD begins in column 1
name is RK4 for fourth-order Runge-Kutta
K or RK2 for second-order Runge-Kutta

or PC for Predictor-Corrector

[See Appendix D-3-b if you write your own MAIN program.] i

The Adams integration package seems to be highly successful with a

S great variety of problems and therefore should be tried first for most prob-
lems, Problems which require inputs at discrete intervals, however, may be !
more suitable for Runge-Kutta integration (see Section IV-C-4), i

* - o,

b oA N 0 0 bl g s B3 g o, R s o

i

No matter which integration algorithm is used, control of integration is
maintained by SUBROUTINE ESPCTL, It computes the initial stepsize (if
variable), calls the specified integration routine, calls the switching routines,
checks for occurrence of switches, and handles printing and storage of plot

data.

2. Stepsize Selection

Immediately after the first call to SUBROUTINE DERIVS, ESPCTL will

determine the initial H in one of the following ways:

° If both Yi and {[i are nonzero, then

H = min (| Yi/s}il*o.z)
i

. If either Yi or :Yi is zero for all i, then
_ TF - TO
H = =513

) The user may define H in ICCOMP, and this H will be tried
first (see below),

. The user may select fixed stepsize integration (with RK2, RK4,
or PC only) by setting FIXSTP >0 (see below),

After initial stepsize selection, stepsize control proceeds differently in
each integration package and is documented in the description of each method

given below,

3. User Control of Stepsize

In order to change any of the stepsize variables, the user should place
the following common block in ICCOMP and use arithmetic statements to

define those variables he wishes to change:

COMMON/STPCON/HP, H, FIXSTP, HMIN, HMAX

L
¢
Iy

' e s 2

where

HP is the current printing interval, This is normally changed
from the *RUN card but may be changed by the user's
program during the run and must be > 0.

H will be the initial stepsize tried, and the current stepsize
during execution. It may be set only in ICCOMP or at
switching times and must satisfy HMIN £ H £ HMAX.

FIXSTP (default = 0) if set >0, causes H = FIXSTP at all times.
HMIN (default = 0) the lower limit on the stepsize. HMIN > 0

causes printing of a warning message and continuation of
integration with acceptance of errors whenever H< 2,0 X

HMIN,
HMAX (default = 1, 0E50) the maximum stepsize permitted,
4, Controlling Solution Accuracy

Solution accuracy may be controlled by the user through either or both
of two variables, which may be input on run-time data cards., The exact use
of these variables depends upon the integration algorithm selected and is
explained in the discussion of each given below. The cards should be placed
after all derivative, input, and output coding but before the *RUN card, The

formats are:

*EPS €

where

Default value of € = 1, E - 6
Default value of q = 1.E-10

*EPS and *Q start in column 1

q; can be either = a constant alone (assumed to be control for
next variable)
or Qi = constant
or ALL = constant

$ is a required terminator for *Q

!
F
[-
|

oz

EXAMPLES:
*EPS 1.E-2

*Q Q2 =1,E-20 1.E-8 Q5 1.ES5 $

1l

*Q ALL = 1, E-6 $

B. ADAMS INTEGRATION

The Adams integration package features both variable stepsize and
variable order integration. Since it is able to dynamically adjust both the
stepsize and the order according to the success of each integration step, it is

capable of solving a wide diversity of problems with both accuracy and speed.

On the first call to ADAMS, an appropriate stepsize H is computed
using the H supplied by ESPCTL as a starting point, a flag IFAIL is set to O,
the order K is set to 1, and all necessary coefficients of formulas are
initialized and computed. On subsequent calls, IFAIL is reset to 0 and H
retains the value assigned in the previous call and is merely tested to ensure
that it is within the precision limits of the computer. Coefficients needed for

integration are then recomputed only if H has changed.

From this point on, the sequence of events is the same for each call to
ADAMS. A solution is predicted and DERIVS is called to evaluate the deriva-
tives at the predicted solution. The local error is estimated at order K, K-1,

and K-2, and if necessary the order is lowered for the next step.

If the errors are within an acceptable range, the step is considered
successful, the predicted solution is corrected and the derivatives re-evaluated

at T + H. Differences are updated for the next step, and the best order and

stepsize are determined for the next step before control is returned to ESPCTL.

If the errors are not acceptable, T is reset to T-H, the flag IFAIL is
incremented by 1 and then {ested, On the first and second failures, H is

halved and the order retained before retrying integration; on the third failure,

4-4

C o ey
a8

R

the order K is also reduced to 1. If more than three failures occur, an
optimum H is also computed before retrying. Again the size of H is tested,
and if too'small for machine precision, the error tolerance is doubled, and

KFLAG is set to 0 so that a warning message will be printed:

"REQUESTED ACCURACY NOT ACHIEVED AT T =_____,
REMAINDER OF SOLUTION IS SUSPECT. "

The error control method of ADAMS utilizes both stepsize and order

variation to keep

where
Ei = estimate of the error in Yi mode in the current step

Q, = maximum thus far of Q, and 'Yil (updated at the end of each
integration step)

(See Ref. 6.)

|

C. RUNGE-KUTTA INTEGRATION

Both fourth-order Runge-Kutta and second-order Runge may be used
with either a fixed stepsize or a variable stepsize. Each is implemented in
its own subroutine, but these routines are parallel in logic and sequence, and
differ only in the integration equations and constants used, The following
paragraphs refer to fourth-order Runge-Kutta with differences applying to

second-order Runge-Kutta noted in parentheses.

1. Fixed Stepsize

If the variable FIXSTP is set > 0 by the user (see Section IV-A-3), the
stepsize H = FIXSTP at all times, and no error testing of any kind is done.
Each call to the integration routine causes two single integration steps, namely

from T to T+H and from T+H to T+2H.

2. Variable Stepsize

If FIXSTP €0 (default is 0,), integration begins with the stepsize H as
determined in ESPCTL. A double step is taken, from T to T+2H, and then
two single steps are taken, from T to T+H and from T+H to T+2H. The total
error is computed and compared with the permitted error bounds. If not
acceptable, stepsize doubling is prevented and H is compared with HMIN to
determine if the stepsize can be halved. If not, integration continues using
the current H and a warning message is printed:

"REQUESTED ACCURACY NOT ACHIEVED AT T =
REMAINDER OF SOLUTION IS SUSPECT."

If H can be halved, it is and the above process is repeated,

If the errors are within acceptable limits, they are further tested, If

less than 0,5% (1% for RK2) of the error bounds, the stepsize H is permitted

to double for the next integration step,

B

L Y o P S N . i3 e

3. Error Control

The error allowed in the computation of Y(i)s is controlled by requiring

that

neq 2
EPSZ > Z [ERRQR(L)]

Q(I)
I=1

and Q(I) is initially set to MAX(Q(I), IYO(I)I) and then continuously updated to

Max@Qm, lyml, | vm |
(T=T-H)

Q(I)

The default value of EPS is 1, E-6 and of Q(I) is 1,E-10, but the user

may change them to suit his problem. (See Section IV-A-4,)

4, Inputting Values at Discrete Intervals

Since the user sometimes wishes to input noise or compute values at
discrete and predictable intervals during integration and because the number
of evaluations of the derivatives is different for each integration routine, a
special flag, FIRSTP, which signals the beginning of each integration step
(or pair of steps) has been added. To use this flag, include the following card

in the derivative segment of codiag

COMMON/RKCONT /FIRSTP

and .est FIRSTP to determine when to input values, FIRSTP = 0. normally,
but is set to 1.0 by the integration routine at the beginning of each step in the
fixed step mode or at the beginning of each pair of steps in the variable step

mode,

T F——— e

Simulations with noise may be easily set up by using *METHOD RK4 or
RK2, setting FIXSTP = 0. (See Section IV-A-3) and inputting a noise value
whenever FIRSTP = 1,0 (See the example below.).

Alternatively, the automatic stepsize control feature can be retained
and a crude kind of switching capability achieved by using “METHOD RK4
or RK2 with a variable stepsize and simply testing the FIRSTP flag (as shown

in the example below). This will permit successful introduction of discrete

or discontinuous values at the beginning of each integration step, irrespective
of the step size. !
EXAMPILE:
*METHOD RK4
*DERIVS
- COMMON/RKCONT/FIRSTP
IF (FIRSTP .NE 1) GO TO 5
ANQISE = RANF(0)
[Y(1) = Y(1) + ANQISE
: 5 ~ CONTINUE
DY() = ... {
. *ENDDERIVS
*ICCOMP
COMMON/STPCON/HP, H, FIXSTP, HMIN, HMAX
d FIXSTP = 0,02
*ENDIC

O“

o TR

D, PREDICTOR-CORRECTOR INTEGRATION

Hamming's fifth-order Predictor-Corrector is the algorithm used, but
since it is not self-starting, fourth-order Runge-Kutta is used to start the
solution at TO and to restart the solution after discontinuities or difficulties
are encountered,

Using the stepsize H as determined in ESPCTL, steps 1-3 are taken
with fourth-order Runge-Kutta and the errors are checked at Tl' If the error
on this step exceeds the error bounds, the stepsize is halved and the solution
is restarted from TO. if the error is acceptable, step 4 is taken with Runge-

Kutta and step 5 with Predictor-Corrector.

2 3

- N A

To

Fig, 1. Step Sequence for Starting Procedure

i. Variable Stepsize

Once the solution has been started in this way, error checks are made
continuously, and the stepsize is halved when the error exceeds the bounds
and permitted to double for the next step when the error is less than 1% of
the bounds. To prevent excessive interval halving if the problem happens to
be ill-conditioned, a counter is used to monitor stepsize halvings. Each time
the solution is restarted with Runge-Kutta, the counter (KCOUNT) is started
at zero, Each time the stepsize is decreased, KCOUNT is decreased by one,
and after each successful step it is increased by one, but never permitted to
exceed zero., If KCOUNT becomes less than -4, a warning message is printed:

"SOLUTION APPEARS ILL-CONDITIONED AND IS BEING RESTARTED, THE

4-9

p

.

L

FOLLOWING Y'S EXCEED THE ERROR BOUND" followed by the Y(I)s. T is

reset to T-H, and the solution is restarted using Runge-Kutta,

The above description of stepsize and error control assumes that the
variable HMIN has its default value of zero, If, however, HMIN is set
greater than zero (See Section IV-A-3) and the error is too large, the step-
size H is halved if possible and the solution continued, But, if it cannot be
halved without making it less than HMIN, it retains its value, the solution
continues and a warning message is printed: "REQUESTED ACCURACY NOT
ACHIEVED AT T =____, REMAINDER OF SOLUTION IS SUSPECT." This
option, it may be seen, may produce less accuracy but in some cases more
speed. The user is advised to consider any warning messages he receives
and to base his selection of HMIN on the nature of his problem and the desired

results,

2. Fixed Stepsize

Although the Predictor-Corrector integration package is intended for
use 2s a variable stepsize method, it can also be used with a fixed stepsize by
setting FIXSTP > 0, (See Section IV-A-3,), In this case, all error checking

is skipped and no interval halving or doubling occurs,.

3. Error Control

The error allowed in the computation of Y(i)s is controlled by requiring

that

|ERROR (D))

o for all I

EPS >
and Q(I) is initially set to MAX(Q(I), I YO(I)I) and then continuously updated to

Q) = MAX(Q(), | YD)

The default value of EPS is 1, E-6 and of Q(I) is 1, E-10, but the user

may change them to suit his problem (See Section IV-A-4),

0 P BRI et -

JORC TR B

s
3 R SR

A,
B.

|
’1
1

Detecting a Sign Change (*SWTCH)
Hysteresis Nonlinearities (XSWMEM)

1, Defining Inputtoa SWMEM
2. Defining Output of a SWMEM . .,
3. Defining the Characteristics of a SWMEM
4, Initializinga SWMEM ,

Locating Events which Do Not Affect Integration
SWTCH's and SWMEM's: Extended Usage . . .

1. Alternate Ways to Define SWTCH and
SWMEMInputs. ¢ ¢ ¢ v v v v s s &

a, User-Written Functions.,

V. DISCONTINUITIES ¢ v ¢ v v v v v vt s o o o s o

b. User-Written SWINPT and SWMEMN ,

2. User-Computed SWTCH and SWMEM Output

How the Switches Work . . . & ¢ ¢ ¢ o o ¢ o & &

Controlling Timing Accuracy of Discontinuities

.

(*HSW, *HSWM, and *HSWE)

5-6
5-7
5-7
5-10

5-10
5-12

5-12

5-12
5-14

5-14

5-15

5-18

e

T2l

e

1 e+ Ao caing

e

SECTION V

DISCONTINUITIES

In programming a system of differential equations, the need frequently
arises for a means to model accurately various types of discontinuities and
nonlinearities which are part of the system, Therefore, several special
features have been built into ESP to handle the most common types of non-
linearities, and with the aid of a little imagination (some examples will be
given) nearly any desired characteristic can be produced by modifying one of

the features,

It is important to understand that these features are provided not merely
for convenience, however! Since the integration algorithms available with
ESP by and large assume that they are working on continuous and reasonably
well-behaved derivatives, haphazard introduction of discontinuities by the
user can cause enormous problems and errors. The user is strongly urged
to be certain that discontinuities are introduced only by means of one of the
devices documented below and that the constraints mentioned with regard to
their use be closely observed. (Section IV-C-4 discusses one other method
of introducihg discontinuities, which may be used with Runge - Kutta integra-

tion.)

These special features, which may be used only in the *DERIVS seg- !
ment, consist of SWTCH's, which detect sign changes in an expression and 5
restart integration, SWMEM's, which represent hysteresis nonlinearities
and also restart integration, and an EVENT locator, which detects and reports
the occurrence and timing of any user-specified event but which does not
affect the integration process, Basic use of these features, which is fairly

straightforward, will be documented first, and the later part of this section

will be devoted to extended usage, a description of how the switches work,

and some details and considerations regarding timing and accuracy.

A, DETECTING A SIGN CHANGE (*SWTCH)

The *SWTCH command detects a change of sign in its control or input
expression, locates the time of this change within a specified degree of accu-
racy (see Section V-F), assigns itself an output according to the sign of the
input expression, produces an automatic print point at the switch time (which
the user may suppress), and restarts the integration from the switch time.

It is useful, therefore, in producing an accurate discontinuous driving func-
tion to a derivative equation and in permitting the user to detect the exact
time of a switch and, if he wishes, to perform some specific act at that time.

Other possible uses will be illustrated in the examples,

The general form of the *SWTCH command is

*$SWTCH i 0+ $ 0. $ controlexpression.1 $

where

*SWTCH starts in column 1
i (1 £1 £50) is the number of this switch

0+ is any legal FORTRAN expression which will be the output if
the control expression > 0.

0 is any legal FOQRTRAN expression, which will be the output if
B the control expression £0,

control expression, is any legal FOQRTRAN expression involving
only T, Y, PAR, system functions and constants.
(For use of other variables, see Section V-D-1,)

$ is a required terminator of the 0+, 0 , and control expressions

The ESP precompiler breaks up the *SWTCH card coding into the input
(control expression), which it writes as part of SUBROPUTINE SWINPT in the
form VA LUES(i) = control expressioni, and the output computation which it
writes as part of SUBROQUTINE DERIVS,

T e e AR AL <L 8 01 98 Tl el 350 A D B STV P F R " i v i 3t

There are two output variables available to the user resulting from
the *SWTCH statement., The first, SWCHi, is available only in the deriva-
tive segment of coding., To use it elsewhere, such as in QUTPUT, the user
must compute it himself (see Section V-D-2). The second, SWTCH(i), is
& available in DERIVS, QUTPUT, SWINPT, SWMEMN and in any other routine
' in which the common block SWTCHS appears. The variables contain the fol-

lowing information:

0+ if control expressioni > 0,
SWCHi

0 _if control expression, <0,

SWTCH(i) where: |SWTCH(i)|is one larger than the number of sign
3 changes made thus far by the control expression,
y and is normally a floating point integer

The sign of SWTCH(i) is the current sign of the
control expression

SWTCH(i) serves as a signal to the user that a
switch has just occurred: On the first call to
DERIVS following a switching, each SWTCH(i)
which has been toggled has its absolute value
increased by 1.5. See example 2 below for a
way to utilize this trait, and see Section V-E for
detail on the exact sequence of events when a
; switch occurs,

EXAMPLES:

1, The example problem in Section Il shows a typical use of *SWTCH:

o 1.0
Input —m Output

. This is coded as

*SWTCH 1 1.0 $ 0.0 $ Input $

which produces the following results:

If input £0., SWCH1 = 0,, SWTCH(l) = - N (N =number of sign
changes + 1)

1.0, SWTCH(l) =

If input >0,, SWCHI1

Also, when the switch is detected and located within HSW(1l) of the

time it occurs, then

SWCH1 = 0., if input £0.
1., if input >0,

and SWTCH(1) = SIGN(|N] + 1.5, Input)

In this example, SWCH1 is the relevant output and is used as a term

in th~ expression for DY (1)
DY(!) = GI"SWCH1 - B*Y(l)

To detect the exact time at which subroutines are to be called to re-
define a number of program constants, the following arrangement
could be used, Notice that no value is assigned to SWCH1 because
the output variable of interest here is SWTCH(i), and that the coding
makes use of the fact that SWTCH(i)'s are nonintegers exactly at
switch times,

(assume PAR(l) = time,, PAR(2) = timez, etc.)

1'

*SSWICH 1 0. $ 0. $ T-PAR(l) §$
IF(SWTCH(l) .NE. AINT(SWTCH(1)))CALL DUMDUMI

*SWTCH 2 0, $ 0, $ T-PAR(22) $
IF(SWTCH(2) .NE. AINT(SWTCH(2)))CALL DUMDUM?2

To produce a sample and hold at times t 1ty ty, .02 similar but more
abbreviated setup can be used, employing only one switch which will
detect a sign change as each successive time is reached. Dimension
a vector TSAMP of length N and store the desired sample times Tl’
2100 into it, Initialize SAMPLE, PAR(3) = t and I =1 and

then use ame following coding:
*SWTCH 4 0. $ 0. $ T-PAR(3) $

IF(SWTCH(4) .EQ. AINT(SWTCH(4))) Go T® 5
C (THIS SECTION WILL BE EXECUTED ONLY AT SWITCH TIMES,)

SAMPLE =

=I1+1
PAR(3) = TSAMP(I)
5 CONTINUE

o A e BV L €) A e KW el i Lo AL i - - . - " T——

In this example it is assumed that t0 < t1 < t2 ces < tn. As execution
begins, this switch is first toggled when t equals t; and at that time
SWTCH(4) has 1,5 added to it so that the IF test will fail, Thus, SAMPLE
is computed and PAR(3) is reset to the next sample time. Since immediately
after this the .5 is stripped from SWTCH(4) this coding will be then bypassed
until t reaches the new value of PAR(3), Note that this represents one of the
few cases in which it is permissible to store a time-dependent value in PAR

and to change the input to a switch in a discontinuous manner,

B. HYSTERESIS NONLINEARITIES (*SWMEM)

A hysteresis nonlinearity, of the general type illustrated in Fig. 2,

can be modeled using the *SWMEM cards explained below,

OUTPUT

—— —— INPUT

Fig, 2. General Form of SWMEM Nonlinearity

It will determine the proper location and output of the hysteresis within the
required accuracy (see Section V-F), inform the user by setting a flag when-
ever a discontinuity occurs, indicate whether the output is in the linear, dead-

band or saturation regions, and restart the integration at each discontinuity.

5-5

o e 7 o A MU 3 A o K AT b S AT i N o, e 5 AL 0 Wit 3 BN 50 0 2 5 4

There are three special control cards which may be used to implement

this option:

*SWMEM (required) defines input to a SWMEM,

*SWMEMDATA (optional) defines the characteristics of the SWMEM.

*SWMEMSET (optional) initializes in saturation instead of at zero.

1. Defining Input to a SWMEM

The input to the hysteresis is defined on the *SWMEM card which is

placed in the derivative segment of coding, The ESP precompiler will write

the input as part of SUBRQUTINE SWMEMN in the form VALUES(i) = inputi.

The format is

where

*SSWMEM i input, $

*SWMEM starts in column 1

i

1npuf:.1

(1£1i<50)is the number of this SWMEM

is any legal FORTRAN expression involving only the variables
T, Y, PAR, system functions and constants. (See Section
V-D-1 if other variables must be used.)

is a required terminator

EXAMPLES:
*SWMEM 1 Y(1) + Y(2) - COS(PAR(12)*T)

SWMEM 16 Y(3)%2 - PAR(1)*T/2.0 §$

TS AT A e T I i N Yt b AT N K, sty

b- 2. Defining Output of a SWMEM

There are two separate output variables from SWMEM's, parallel in
nature to those from SWTCH's, The first, SWMi, is automatically com-
puted and made available to the user in the derivative segment. To use it
elsewhere, the user must compute it himself (refer to Section V-D-2), The
second output variable, SWMEM(i, 4), is available in any routine where the
common block SWTCHES appears. The variables contain the following

. information:

SWMi is the actual output value of the i'® SWMEM

SWMEMUI(i, 4) is normally a floating point integer indicating the
present position on the hysteresis by its value:
-2.0 indicates negative saturation "
-1,0 indicates slope on negative side”
0.0 indicates deadband
1.0 indicates slope on positive side "
2.0 indicates positive saturation

sk

SWMEM|i, 4) also signals the user that a "corner has
just been turned" on the hysteresis: On the first call
to DERIVS following a SWMEM discontinuity, the
absolute value of each SWMEM(i, 4) which has changed
state is increased by 0.5. After the derivative equa-
tions are evaluated, the SWTCH's and SWMEM's are
reevaluated and the 0.5 removed before the integration
is restarted. (This signal may be tested and used in the
same ways that SWTCH(i)'s are used in the examples
(refer to Section V-E for more detail on the exact
sequence of events.,)

LY YT T T T T

N L o

3. Defining the Characteristics of a SWMEM

Generally the user will want to define the constants C1l through C10
(see Fig. 3) characterizing his SWMEM, although they do have default values
for the simplest case. Constants C3, C4, C8, and C9 are the slopes, How-

ever, an infinite slope is defined by setting the corresponding C, equél to zero.

0‘.

A X
If the user wishes to know what path he is following on the hysteresis, he
may store the past value of SWMEMI(i, 4) so he will know where he is
coming from at each "corner."

‘ . 5-7

'
!
i
i

R e

OouUTPUT

(9] (> INPUT

C10

Fig. 3. SWMEM Characteristics

The C's are usually defined as part of the run-time data cards,
meaning that they are placed somewhere between *ENDIC (if used) and
*RUN, and are picked up in the same way that PAR's are picked up from
*PAR cards. The format for inputting C's is

*SWMEMDATA
i ¢ €5 ... c10$
iy € € «ov €0 8
where
*SWMEMDATA starts in column 1 E
i is the number of the corresponding SWMEM
C. is either a constant alone or C; = constant, and blanks are
J separators, If a constant appears alone, it is assumed to

be the value of the next c;. If no value is given for c;, its
default value will be used]. i

$ is a required terminator i

5.8

2y T8 o sRE L

L

o4

b IR AR A i i i i T B S 2R o i 1 e e

In general Cl must be > C6, except for special case 1 below,

Default values are C5 = 1, Cl0 = -1, all other Cs =

= 0., giving

Input

SPECIAL CASES:

1,

Cl = C2 = C6 = C7 is permitted, giving something like this:

e

For a symmetric nonlinearity (corresponding to forming quadrant III
by rotating quadrant I through 180 degrees about the origin), only Cl
through C5 need be defined with the result that

Cc6 = -Cl C9 = C4
C7 = -C2 C8 = C3
Cl0 = -C5

If it is necessary to ¢ompute any of the C values, they may be defined
as CONSTS in ICCOMP, if the following common block is added:

COMMON/SWHPAR/NCHNG, NALTER, ISWTYP, KSV,
CQONSTS(50, 10), SWSET (50)

C values defined in ICC@MP will supersede any that are input on
*SWMEMDATA cards, but no error check will be made on them,

5-9

4, Initializing a SWMEM

Normally, the function is initialized on the region corresponding to
starting from zero, but it may be initialized on the region corresponding to
starting from saturation by using the *SWMEMSET card among the run-time

cards, The format is

*SWMEMSET n; n, ... nl $

where
*SWMEMSET starts in column 1
nj is the number of the *SWMEM to be set and blanks are separators
$ is a required terminator of the list

The nj are not retained from run to run, so it is necessary to redefine them

for different runs,

C. LOCATING EVENTS WHICH DO NOT AFFECT INTEGRATION

The EVENT capability is useful for finding events which do not intro-
duce discontinuities into the differential equations, It detects the time of
occurrence of any event specified in the user-written SUBRQUTINE EVENTS
within the timing accuracy specified on the *HSWE card (see Section V-F),
The event is recognized as a change of sign in the input or event-defining
expression, and any event can therefore occur many times within a run.
Having located an event, ESP then interpolates T and Y to the event time and
calls the user-supplied SUBRQUTINE NQTIFY, as its only response to the
event, It does no printout and it does not in any way affect the integration

process or the rest of the run.

To use the EVENT locator, three things must be done:

e Place an *NEVENT card among the run-time data cards:

*NEVENT n

where

*NEVENT starts in column 1

n is the number of events to be defined

e Supply the subroutine to define the functions which determine the
events:

SUBROUTINE EVENTS(VA LUES, T, Y)
DIMENSI®N VA LUES (1), Y(l)

[Other common and dimension statements as needed]

VALUES(l) = expression determining event,

VALUES(n) a expression determining event
RETURN n
END

e Supply the subroutine to receive notification that event number IEVENT
has occurred at the given values of T and Y, This routine will be
called once for each event occurrence, in the order in which events
occur, Its format is:

SUBRQUTINE NOTIFY(T, Y,IEVENT)
DIMENSI®N Y(1)

[Other common and dimension statements as needed]

[Statements defining how EVENT information is to be used]

RETURN
END

EXAMPILE:

100

SUBRQ@UTINE N@TIFY(T, Y, IEVENT)

DIMENSI®N Y(1)

PRINT 100, IEVENT, T

FORMAT(1HO, *EVENT*, 14, *QCCURRED AT *, E8, 2)
RETURN

END

.

T TR

e v e . T

D. SWTCH's and SWMEM's: EXTENDED USAGE

Frequently the standard usage of SWTCH's and SWMEM's is too con-
fining for the user's needs, either because of the limitations on how inputs
may be defined or because the desired output values are not automatically
available in all routines. The following paragraphs illustrate several ways

that these limitations on both input and output can be circumvented.

1. Alternate Ways to Define SWTCH and SWMEM Inputs

Basic usage of *SWTCH and *SWMEM limits the form of their inputs to
simple FORTRAN expressions using T, Y, PAR, system functions and
constants only, because of the way these statements are translated by the
precompiler into the input routines SWINPT and SWMEMN, Since it is
sometimes necessary either to use other variables or to execute a series of
statements to define a switch input, alternate means of defining switch inputs
are available. The first, and probably simplest, is for the user to write
a function subprogram which defines his input; the second is to simply write
the entire SWINPT or SWMEMN routine himself. In either case the user
should remember that T and Y are always updated for the purpose of com-
puting switch inputs, and that any time-dependent variables used to compute
switch inputs should themselves be computed within the function subprogram
or within the user-written SWINPT (SWMEMN) so they too will be properly
updated,

a. User-Written Functions

The major advantage in using function subprograms to define switch
inputs is that it permits the user to combine the convenience of the
*SWTCH(*SWMEM) card with almost total flexibility in defining his input,

He may use common blocks to pass his own variables to the switch input
computation, and he may use as many FORTRAN statements as he wishes to
define his actual input., The following example illustrates some possibilities

of this approach:

EXAMPLE:
If the switch input is

if Kl
if Kl

Y(3) * 10, *BETA
Y(3) *BETA + Y(2)

1, input
0, input

nu

and the desired output is

if input > 0, output
if input = 0, output

1.0

0.0

the switch can be coded by putting the following cards in the derivative
section

COMMON/BLQOCKIL/K1,BETA

. -
.

YSWTCH 1 1.0 § 0.0 $ SWFUNC(Y) $

and writing the following function subprogram to be placed before the
derivative coding

FUNCTI@N SWFUNC(Y)
COMMON/BLOCK1/K], BETA
DIMENSI®N Y(1)
IF (K1, EQ. 0) G® T@ 5
SWEFUNC = Y(3) * 10, *BETA
RETURN

5 CONTINUE
SWEFUNC = Y(3) *BETA + Y(2)
RETURN
END

b. User-Written SWINPT and SWMEMN

If the user has many switch inputs which require extensive computa-
tion, he may prefer to simply write his own input routines rather than write
many functions. As with the function subprograms, any number of common
blocks and computations may be included when the user writes his own sub-
routines SWINPT or SWMEMN. He must, however, write these routines in
the form in which ESP expects them, as explained below, and be careful to
place them after his job control cards but before the *DERIVS segment,
which will result in their being used instead of the dummy routines written by
the precompiler. Either routine or both may be user-written, but if the user
writes his own routine for SWTCH inputs (SWMEM inputs), he must define all
of his SWTCH inputs (SWMEM inputs) within it. Since his routine will sup-
plant that written by PRECOMP, the effect of any input expressions coded only
on *SWTCH (*SWMEM) cards will be lost. The procedure for writing SWINPT
and SWMEMN is almost identical and is outlined in the following steps:

] Place the card, *SWITCHES n, (*SWMEMCNT n) where n is the

number of SWTCH's (SWMEM's) being used, among the run-time
data cards,

. Write the first four cards of SUBROUTINE SWINPT
(SUBRQUTINE SWMEMN), normally written by the pre-
compiler, exactly as they appear in Appendix D-3-b.

L Include any common blocks, dimension statements, function
definitions, and computations needed to define the switch input
expressions,

. Define each of the SWTCH (SWMEM)]) inputs in the form
VALUES(i) = input expression,
) Conclude the subroutines by writing the cards RETURN and END,

2. User-Computed SWTCH and SWMEM Output

The switch output variables SWTCH(i) and SWMEM(i,,j) are passed in
the common block SWTCHS to those segments of the coding translated by

the precompiler, Therefore, they are available at any time within the

R L

subroutines DERIVS, QUTPUT, SWINPT, and SWMEMN. SWCHIi and SWMi,
however, are computed only within the derivative segment and appear there
only if *SWTCH and *SWMEM statements have been included. [If *SWTCH
(*SWMEM) cards are used in addition to user-written SWINPT (SWMEMN),
PRECOMP will correctly write the coding into DERIVS to define SWCHi
(SWMi), even though the input expressions will be lost.] There are situations,
therefore, in which the user may have to use SWTCH(i) and SWMEMJ(i, j) to
compute SWCHi and SWMi himself: the first is during routine usage of
#*SWTCH or *SWMEM when the user wants to compute SWCHi or SWMi to use
outside of DERIVS, and the second is when he has written his own switch
input routines, uses no *SWTCH or *SWMEM cards, and wants to use these

variables anywhere.

SWCHIi can be computed in any routine which contains the common

block SWT CHS by including the statements

IF (SWTCH(i) .GT, 0) SWCHi some expression

IF (SWTCH(i) . LE, 0) SWCHi some expression

SWMi can also be computed in any routine containing the common block

SWTCHS by using the expression

SWMi = SWMEM (i, 3)-SWMEM(, 2)*(SWMEM(i, 1)-input)

E. HOW THE SWITCHES WORK

If switches of any form, SWTCH, SWMEM, or EVENTS, are used in
an ESP program, their inputs are processed regularly after the completion
of successful integration steps to see if any switches have occurred. To
minimize the calculations required to do this, the inputs are all defined in
the separate routines--SWINPT, SWMEMN, and EVENTS--so that only
these routines (and not DERIVS) need to be called to check the inputs. To
detect switches and find the zero crossings, one past value of the input is

always saved.

5-15

i
H
H
i)
i
1
H
}
¢

et b S ot

Once a switching has been detected, a modified version of Wilkinson's

method (Ref. 2) is used to find the time of switching, If neither the saved
value nor the present value of the input is zero, linear interpolation is used
four successive times, testing for convergence each time. If convergence
has not been accomplished after four iterations, a bisection is performed,
and the linear interpolation is repeated in sequences of four plus a bisection
until convergence is achieved. The condition for convergence is that the
zero crossing be found within an interval of time (see the explanation of the
*HSW, *HSWM, and *HSWE cards, Section V-F).

After determination of the first switching (if more than one occurred
in the interval T - H to T), all switches which would switch within the
accuracy requirements of the first are allowed to do so; then the solution is

restarted, The sequence is as follows:
1, The zero crossing is found.
2., N@TIFY is called if EVENTS is used and any have occurred,
3. Printing is done at any print intervals prior to the switch time,.

4. Variables to be used in restarting the integration are recomputed ‘
at the switch time. |

5. If NDISPR = 2, the output data prior to the switching (that is,
the data at the switch time but before the effect of the switch has
been computed) is plotted and printed.

6, SWTCH(i)'s and SWMEM(i, 4)'s are set to the proper signs and
values and 0.5 is added to those that have switched.

7. DERIVS is called to evaluate the derivatives with the 0.5 flags
on the switch outputs (see Sections V-A and V-B-2),

8. All SWTCH and SWMEM inputs are reevaluated and their outputs
updated in case one switch has toggled another,

9. EVENTS inputs are reevaluated if used,
10, The 0.5's are stripped from the switch outputs.

11, DERIVS is called to evaluate the derivatives without the 0,5's
on the switch outputs,

5-16

ey 300 M AR LA 24T « 3 i) a5 0 B e 0L 265 3 GCED i ppi . oL

12, Plot data is stored and if NDISPR = 0, print occurs,

13, Integration is restarted from the switch time. (See flow charts ;
of ESPCTL in Appendix D-4-c-iii.). .

If another switch occurred later in the same integration interval, it
s will be detected after the next successful integration step, and the above

procedure will be repeated. i

This sequence of events has several important implications for pro-

grams in which two or more SWTCH's or SWMEM!'s occur in series:

° Two SWTCH's in a series (i, e,, the first triggers the second) will
produce the correct output for the second SWTCH in the second
call to DERIVS, Also, SWTCH(i) will contain an accurate !
count of the actual number of switchings to date, but no flag
will appear on the second SWTCH(i). Thus the "IF (SWTCH(i)
.EQ. AINT(SWTCH(i)))..." test will not work for the second
switch, -

. Two SWMEM's in a series (i.e., the first triggers the second) will
also produce the correct output for the second SWMEM in the
second call to DERIVS, On both the first and second calls to
DERIVS, the integer value of SWMEM/(i, 4) will accurately indi-
cate the position on the hysteresis., However, no flag will ap- i
pear on the second SWMEM and, like the second SWTCH(i), the '
user will not be able to test for it,

S N O S A U

e More than two SWTCH's or SWMEM's in a series will result in
the first two being detected as above, and the next two being

i detected and reported some HSW or HSWM interval later, and

: so on,

“scz!

° The amount and accuracy of print and plot data in the neighbor-
hood of switches may be controlled by use of the flag NDISPR:

NDISPR = 0 Plot data is stored at end of switch
sequence, but no print occurs at the
switch time unless it happens to coincide
with a print time,

b . 1 Plot data is stored and print occurs at
) o the end of the switch sequence,
2 Plot data and print data are stored at the

switch time both before the effect of the
switch is calculated and afterward,

|
z

AL A Mo 4 o o AN A X e

The default value of NDISPR is 1, To change this the user must include

COMMO@N/NDISPR/NDISPR

in his program (preferably in ICCOMP) and set NDISPR to the appropriate

value,

F. CONTROLLING TIMING ACCURACY OF DISCONTINUITIES
(*HSW, *HSWM, AND *HSWE)

There are three special control cards for controlling the allowable i
timing error in determining SWTCH's, SWMEM's, and EVENT's, All are '
optional and if used are placed among the run-time data cards, that is after

*ICCOMP...*ENDIC and before *RUN, in any order. Their formats are

L g

*HSW h1 h2 hn $

F *HSWM h;, h, ... h $

*HSWE h1 hZ coe hn $

where

‘ Default values of all hi = 1E - 6
| *HSW (*HSWM, *HSWE) starts in column 1

I

{

{
hi can be a constant alone ‘

l w

|

Hi = constant
ALL = constant

(If a constant appears alone, it is assumed to be the
control for the next SWTCH, SWMEM, or EVENT.)

$ is 2 required terminator

*

5-18 ;

E. EXAMPLES:
*HSW

produces:

*HSWM

produces:

*HSWE

produces:

ALL=1.,E-10 $

all HSW(i) = 1.E-10

H1=1.E-2 H3=1.E-10 $

HSWM(1)=1.E-2

HSWM(2)=1.E-6 [default] .
HSWM(3)=1.E-10

any additional HSWM(i)=1. E-6 [default]

H2=1.E-20 1.E-32 H6=1.E-10 $

HSWE(2)=1.E-20
HSWE(3)=1.E-3
HSWE(6)=1.E-10

HSWE(1)=HSWE (4)=HSWE(5)=any additional
HSWE(i)=1,E-6 [default]

0“‘

5-19

R

Lt e

L

|
1 VI. OUTPUT . v v v v v st o o o o o s o o s o o s o o s s o s o o » 6-1
i A, Printed Output: Automatic Formatting 6-1
Printing ESP Variables (*PRINT) 6-1
2, Printing User Variables or Computing Output
(*QUTPUT...*ENDQUT) v v v v v o v o o 6-3
. 3. Accuracy of Printed Values ¢ ¢ ¢ « & 6-4
4
:q B. Graphic Output v v v v v e e e e e 6-5
a 1. Storing Plot Data . . . o . o v v v v v v v v o ou s 6-6
A4 2. Plotting Output (*\GRAPH) . + « « « v s v v v o 6-7
i ’
3
: C. Printed Output: User Formatted « ¢« ¢« ¢ « + & 6-11
D. Data File Qutput . . . v v v 0 v v ¢ o v o o o 0 o o o o s 6-13
1. Data Written onto TAPEIL ., 6-13
2. Data Written onto User-Named File 6-16
7 "
‘. -
P

[
Y

| o smaan et AT N Al T A NS 1o o L NIRRT - Riamed . . s

e

.

A b A A bt o s AR e Ol

B it e e, T N RS

SECTION VI

OUTPUT

Output from ESP may take a variety of forms, depending upon the needs
and wishes of the user, Printed output may be automatically formatted by
means of the ESP command *PRINT or it may be tailored to the user's speci-
fications using standard FORTRAN. Graphic output may be produced on
computer printout, on microfilm or on paper by the Calcomp pen plotter
{see "IPD Computing Guide, " Ref, 4), Data files may be written onto mag-
netic tapes for later use by another program or for later plotting. Any or

all of these modes of output may be combined in any one program.,

Because each mode of output has advantages for particular situations,
the following sections will attempt to give the user sufficient information,
not only to easily use each one, but also to help him decide which best suits

his needs,

A, PRINTED OUTPUT: AUTOMATIC FORMATTING

The fastest and easiest way for the user to obtain printed output from
his program is with the *PRINT command., With this option, the user needs
only to name the variables to be printed and the labels to be assigned; he
gives no print formats, Labels and values are printed in the order named,
six columns to a page, in E-format. All labels are printed and then all
values, so that if there are more than six of each, corresponding labels and
values will not be adjacent, although their correspondence will still be clear
({see example below), *PRINT may be used in two different ways, depending

on the nature of the values to be printed,

1. Printing ESP Variables (*PRINT)

If all the values to be printed can be expressed in terms of T, Y, DY,
PAR, constants, user supplied functions, or system functions such as SIN,

COS, and SQRT (i.e., no other variable names are needed to define the

values for output), then the fastest and easiest way to obtain printout is to use

the ESP command card

#*PRINT label1 = expression1 $.... labeln = expressionn $ 3

where
3 *PRINT starts in column 1
3 labeli is 10 characters (8 on IBM) or less (with no embedded
$ blanks) which will be used to label the value of expres-
] sion at print times
] expressioni is any FORTRAN expression using T, Y, DY, PAR,
- constants, and system functions up to 1206 charac-
ters (No other variables may be used,)
' $$ terminates the entire *PRINT statement (No continua-

tion marks are used and all 72 columns may be used.)

:
!

NOTE

*PRINT may appear only once in a program
if it is used without *@UTPUT and *ENDQUT,

The *PRINT statement will be translated into FQRTRAN statements
which will be written as part of SUBRQUTINE QUTPUT in the form

PRINT (i) = expre ssioni

The labels will be written onto a *HEADINGS card which will be placed on

> TAPE12 with the other run-time data cards, The number of labels found on

the *HEADINGS card at execution time will determine the number of values

actually printed from the PRINT vector (see *HEADINGS card, Section VII-G-1,)

EXAMPLE:

#*PRINT

0.‘

TIME=T $ SIGMAll=Y(1)*PAR(1) $

SIGMA12=Y (2)*PAR(l) $ SIGMA2l=Y(3)*PAR(l) $
SIGMA22=Y (4)*PAR(l) $ PHI=Y(5)%*PAR(l) $
PSI=Y(7)*PAR(l) $ THETA=Y(6)*PAR(l) $
OMEGA1=Y(8)*PAR(l1) $ OMEGA2=Y(9)*PAR(l) $
OMEGA3=Y(10)*PAR(1) $ THP=(Y(6)-Y(11)*PAR(l) $ $

6-2

TImME S5IoMALl SIGMag2 SIGMA21 SIGma22 PHY

PS1 THETYA OMEGAL OMEGA2 OMEGA3 THP
F 1.13,085c+¢53 2,351334LE¢0Y 1.2415G2E+01 9.999832E-)9 9,9998 22£-09 -1,587568E¢(02 :
; BobSTGEISS =3.555702E+01 -8.L16443E~-03 -5.928054€-92 4e503746E-03 ~€.555762E+01

1.2).40ue33 2,105¢78c+l 1.293118¢+01 3,399832c-09 9.939%22¢-09 ~1.765729€+080 ;
: Tob?u016305y -7.255743t408 -8.8642943c~03 ~5.935846E-92 ©s256501€~-03 ~7.255743E¢01

" ﬂ-'ﬂ

produces a printout that looks like this:

1.3030vuz+u3
7.672514C 433

2elb7b1bieC?
~7.856260L5+C1

1.3352652¢01
-9.216335c-03

9.993832€-39
~5.934609€-32

9.999422€-C9
3.992559€~-C3

~1498CO5LE+S)
«7.8562L4L5¢01

e i

Ehaaidn Bt e o obto Sha AN Sitd
.

2. Printing User Variables or Computing Output
(*@UTPUT...*ENDQUT)

To print the values of expressions which contain variable names other
than T, Y, DY, PAR, system functions or function subprograms, the ESP
command cards, *QUTPUT and *ENDQ®UT must be used to signal the beginning
and the ending of the output computations and printing commands. All state-
ments between these two cards will be written into the output subroutine, and
the user will find it helpful to remember that this program segment is a
separate subroutine as he decides what he may and may not do within it, In
general, between *QUTPUT and *ENDQ@UT, any FORTRAN or WHELP may be
used to define user output variables, and *PRINT, as defined above, may be ﬂ

used to print them; but certain rules must be followed:]

e If *PRINT and *@UTPUT...*END@UT are both used, *PRINT

S 4 may only be used between *@UTPUT and *ENDOUT, but it may
Z : appear as many times as necessary here as long as the total
2 number of print variables specified does not exceed 60,

e User variables appearing in *PRINT expressions must be defined
before *PRINT,

¢ FQ@RTRAN rules regarding the sequence of declarative and
executable statements within the section must be followed.

6-3

The general format of this section is

*@UTPUT

F@QRTRAN and WHE LP statements (in any order consistent with
F@RTRAN rules)

*PRINT labell = expression, $... labelrl = expressionn $ 9%
FORTRAN and WHELP statements

*ENDQUT

EXAMPLE:
*@QUTPUT
COMMON/BLOCKA/A, B, R, DMEGA
*IDECLARE A (6, 3) B(3,6) R(6) X(6) $ [WHELP statement]
CALL DIDDLE (T, Y, THETA, ALPHA)
X = A* B * R/ (THETA) $ [WHE LP statement]
Z = THETA + T * ALPHA
*PRINT TIME = T $ X1=X(1) $ X2=X(2) $

X3=X(3) $ THETA=THETA $ z=z $ $
(additional FORT RAN)

*ENDQUT

Notice that the subroutine DIDDLE must be supplied by the user,

and that the variables A, B, R, and @MEGA must be defined elsewhere,

3. Accuracy of Printed Values

Since the print interval and stepsize are unrelated, it is generally
necessary to evaluate the solution just for printout. Adams integration uses
the code and method outlined in Ref. 6, and the solution (Y's) and deriva-
tives (DY's) are interpolated from the difference table kept internally. For

predictor-corrector and Runge-Kutta integration, in order to avoid calling the

integration routine just for printout, Hermite interpolation (Ref, 3), which uses

the functional values and their derivatives at three points, is employed to

6-4

R T e R

e

B oL T e AR T WA PR £ S et o NI T

e o WM e 1S s I RN £ 10 LA Dbl .

evaluate the solution (Y's) and derivatives (DY's) at intermediate points.

Thus, the proper T (time) and its corresponding Y's and DY's are automati-
cally passed to QUTPUT at a print time, and these values and any other output
variables computed using only these and constants will be correct for the time

given,

However, since in the process of integration ESP generally oversteps
the print time and "backs up" to print, PAR's and time dependent variables
which may have been passed to QUTPUT by a user-supplied common block
may not correspond to the print time. The best way to avoid this problem is
to recompute these variables within *@QUTPUT...*ENDQUT, so that they will
always reflect the actual values at the print time. If this involves much
computation, the user may want to test PRINT (1), as shown in the example
in Section VI-C, to ensure that these values are recomputed only for printout.
(Since plot data storage occurs at the end of each successful integration step,
or pair of steps, irrespective of the print interval, data stored for plotting

will be consistent and the user need not concern himself with this problem.)

B. GRAPHIC OUTPUT

To produce graphic (plotted) output from an ESP run, the user has two
tasks: storing the data to be plotted and specifying how it is to be plotted.
The simplest way to do these tasks is to store data into the vector PLOT and
then use the *GRAPH command (explained below) to plot it, An alternative
way is to write all plot data onto a magnetic tape or disk file and then plot it
using some other plotting routine (see "IPD Computing Guide, " Ref, 4). The
first method is the simplest and most satisfactory for most user needs, The
latter is useful mainly for very time-consuming program runs where it is
desirable to have output data available for repeated plotting or study without
the necessity of rerunning the program. (Refer to Section VI-D on Data File
Output.) It is also possible to produce overlays using data generated in dif-

ferent runs (see Appendix F on Multiple Runs.).

1. Storing Plot Data

All data to be plotted by *GRAPH must be stored by the user in the vec-
tor PLQPT. The simplest way to do this is within the *PRINT statement used
with or without *QQUTPUT..,*ENDQUT, as follows:

*PRINT TIME=PLQ®T (1)=T $ RATE=PLOT2)=Y(l) $
OMEGA=PLOT3)=Y(1) + Y(2) $ $

This statement accomplishes both printing and labeling as explained
above and storing of data for plotting. It generates the following statements
in the FORTRAN version of SUBRQUTINE QUTPUT.

PRINT(1)=PLQT(1)=T
PRINT(2)=PLOT(2)=Y(1)
PRINT(3)=PLOT(3)=Y(1l) + Y(2)

The user may also store the plot data himself if he is not using *PRINT
or wishes not to bother adding to or changing his *PRINT cards, To do so
he simply adds the FORTRAN statements needed to the *@UTPUT. . *ENDQ®UT
section of his program. The example above would then become
*@QUTPUT
*PRINT TIME=T $ RATE=Y(l) $ OMEGA=Y(l) +Y(2) $ $
PLQT(1)=T
PLOT(2)=Y(1)

PLOT(3)=Y(l) + Y(2)
*ENDQ@UT

WARNING

Do not attempt to store plot data in this way in other parts of
the program (anywhere outside of *@UTPUT,.*ENDQUT); array
PLOT will not be recognized and the timing of data storage will
be wrong,

The assumed or default number of plot variables which may be stored in

this way is 10, If more than 10 variables are to be stored, a *MAXPL®TS

.

card must be placed among the run-time data cards, that is, after *ICCOMP...
*ENDIC, but before *RUN, The format is

6-6

hd

T

%

e O

*MAXPLPTS n

where
*MAXPLOTS starts in column 1

n is an integer (£100) specifying the maximum number of plot
variables to be used

During execution of the program, ESP uses a file (TAPELll) to store
the data placed in the PLOT vector, storing a point at the end of each suc-
cessful integration step or pair of steps and at each switch time, At plotting
time ESP selects a representative sample of this data for actual plotting (up
to 1000 values per variable), and in most cases no significant loss of infor-
mation occurs, However, if the user wishes to have greater control over
the number of points or the intervals over which they are plotted, PROGRAM
ESPPLAT may be used instead. (See Section VI-D-1,)

2, Plotting Output (*GRAPH)

Printer, film, and/or pen plots are obtained by placing *GRAPH com-
mands after the *RUN which computes the results to be plol:t:ed.Y The

general form is

*GRAPH n_ n_[size][grid][s.aling][type]
X YTtitle]
[X title]
[Y title)

*GRAPH n_n_
x 'y

where
n_ (1< n_ £100) is the PLQT subscript of the desired x variable
ny (1€ n_<100) is the PLPT subscript of the desired y variable

([size], [grid], [scaling], and [type] are optional, and may appear in
any order after n_ and n_ but must appear on the same card with
*GRAPH.,) y

TPlotting is accomplished by the subroutine GRAPH; for more complex needs
and some further options, the user is referred to the writeup of this sub-
routine.

6-7

More specifically

[size] = [SMALL
SIZExxyy
OVERLAY
OVERLAY1

where
Default choice is SMA LL

SMALL implies a 6 X 10-in. printer plot or a 10 X 15 in,
hardcopy or film plot

, SIZExxyy implies an xxXyy-in. plot (10 X 10-in. or 10 X 15-in,

: nicely fills a linear microfilm grid; this will be turned
' sideways and possibly cover more than one page on
the printer plots.)

OVERLAY implies size and scaling as on the previous graph, A
new plot will result on the printer while a true over-
lay will be made on pen or film plots (See TYPES).

OVERLAY! implies the same as OVERLAY except that the data
is completely rescaled and on pen and film a new y-
axis scale is placed at the right end of the graph,

i
5 | [grid] = [GRIDggg] ?

where
Default choice is GRID3Al

. ggg is the three-character number specifying the type of plot grid ’
. to be used (see "IPD Computing Guide, " Ref, 4)

Printer plots are always linear-linear

If grid is semilog or log-log, film/pen plots are made using log10 of
the X or Y data or both

-
L3
R

0"

A SR

where

where

AUTO
X0 XDEL

AUTO
Y0 YDEL

[scaling] = [SCA LE

|

Default choice is AUTO for both axes (automatic scaling based on
actual data stored)

If SCALE appears, the parameters within | I must be specified for
both X and Y

AUTO produces automatic optimized scaling based on actual data for
X-axis (Y-axis)

Xo (Yo) is the minimum scale value to be used for X data (Y data)
XDEL (YDEL) is the absolute value of the difference between one

scale annotation and the next, For a 10 X 10-in. plot, XDEL =
(XMAX - X0)/10,

[type] = [TYPEt [t,](t,]

Default choice is TYPEP

— p—

t. = P for printer plots

or

S for printer plots to be overlaid
for film plots

C for Calcomp pen plots*

S

Any combination of P, F, and C may be used (Example:

TYPEFC, TYPEP, TYPECFP)

S may be used in place of P if Printer plot overlays are to be made,.
If TYPES is specified on the *GRAPH card, no printer plot will be
produced for that card, but the plot data will be stored. Thus,
utilizing TYPES on all but the final overlay card will produce a

single printer plot containing all overlays to be produced.

$See "IPD Computing Guide, " Ref, 4, for other steps required to obtain pen
plots

EXAMPILE:

The following sequence of *GRAPH cards will produce a single

printer plot with three graphs on it.

*GRAPH 1 2 TYPES
*GRAPH 1 3 TYPES OVERLAY
“GRAPH 1 4 OVERLAY

[title(s)] = [plot title
X -title
Y -title

where
Default choice is blanks

Each title is any character string appearing in columns 1 through 50,
3 (Column 1 should be blank to avoid possible misidentification,)

All titles are optional but must appear in the order given, each on a
separate card (To delete one, substitute a blank card,)

EXAMPILES:

1. *RUN 5 0 0.1 50
*GRAPH 1 4

This will produce a printer plot of the Y-axis data stored in PLOT (4)
versus the X-axis data stored in PL@T (1), It will make a SMALL (6 x 10~in.)

plot with automatic scaling and no titles. This represents the minimum

specifications to produce a plot,

2., *RUN 7 0 0.5 30
*GRAPH 2 5 SIZE1510 TYPEPF SCALE AUTO 5.0 50

. ERROR IN ANGLE OF ATTACK
o DESIRED ANGLE
: DIFFERENCE BETWEEN GOAL AND ACTUAL

01T o M o1 o M i AN W0 5. B NN i il F R0

This example shows considerable user control of plot parameters,
It will produce a linear plot on printer and film with an X-axis 15-in.
long and automatically scaled. The Y-axis will be 10 in. with Yo at
5.0and Y . at 505.0. "ERROR IN ANGLE OF ATTACK" will be
. printed across the top of the plot, "DESIRED ANGLE" along the X-axis
and "DIFFERENCE..." along the Y-axis,

C. PRINTED OUTPUT: USER FORMATTED

At any time the user wishes to produce output printed to his own speci-
fications, he may do so by simply adding FOQRTRAN print (or writeJ)
statements and their corresponding formats to any section of his program,
even if he is also using *PRINT or *@UTPUT...*ENDOUT, Since con-
siderable care must be exercised in controlling the frequency of printout
produced in this manner, it is suggested that *PRINT be used as much as
possible during program development and debugging stages because of its

’ . speed and ease, and that FORTRAN print statements be added only when a %
. more specific format is needed for production runs. In adding print state-
ments the user should consider the following points:

1, Since each segment of the user's coding results in a separate

: subroutine, the user must be careful to print in each segment
l . only those values known within the section; that is, those

: values passed to it by ESP, defined within the segment, or
1 passed to the segment by user-supplied common block.

‘ 2, A print statement placed within *ICCOMP. . *ENDIC will be
E executed once at the beginning of each run, since that is the
J only time SUBRQUTINE ICCOMP is called. This is the logical
. place, therefore, to print variables which are constant for the
’ particular run. (Refer to Section II-B-STEPS5 for a list of the
: inputs and constants ESP prints automatically at program ini-
tiation,)

Y Since the main program written by PRECOMP does not assign a TAPEn type
name to the Output file, if WRITE statements are used, the user must write
his own main program in order to set TAPEn = OUTPUT,

4 6-11

—_—

3. Placed within *DERIVS, ., *ENDDERIVS, print statements will be
executed every time the derivatives are evaluated, which is
several times per step at possibly decreasing times, the exact
number depending on the integration algorithm used., Printout
of this type may be useful for specific debugging information,
but will be unwieldy and confusing for general output,

4, Data which is to be printed only at the completion of a run may
be printed from the MAIN program. The user would need to
(1) place a *RETURN card at the end of the run-time data cards,
to cause program control to return to MAIN; (2) write his own
MAIN (see APPENDIX D-3-b) adding common blocks to transmit
the data to be printed; and (3) add print coding to MAIN between
CALL ESPII and END,

5. Within *@UTPUT. .*ENDQUT is generally the best place to add
print statements, since the output subroutine is called at regular
and predictable intervals, namely, once at the end of each inte-
gration step for plotting purposes and once at each print time for
printing purposes. As long as printing is accomplished by
#*PRINT commands, ESP checks to see that printing occurs only
at the specified print intervals, When the user writes his own
print statements and formats, however, he must be the one to
see that they are executed at the proper times. To do this he
simply tests PRINT(l) (before setting it!), PRINT (1) will be
4HPLOT if QUTPUT is being called for plotting purposes or
S5HPRINT if it is called at a print time.

EXAMPILE:

*OQUTPUT

If (PRINT (1) ,NE, SHPRINT) GO TO 5
PRINT 100, T, Y(1), DY(1)
100 FORMAT (1HO, 3E20.8)
5 CONTINUE

*PRINT ...

*ENDQ@UT

6-12

D. DATA FILE OUTPUT

In addition to printed and plotted output from an ESP program, the
user may wish to output his data on a magnetic tape that he can reuse after
the termination of his job. Two common reasons for needing this capability
are the desire to use the output as input to another computer program and the

wish to ensure that data from a particularly time-consuming run is saved for

plotting. In either case, there are two alternative ways to save these results,
either by saving TAPELlL, the file on which ESP automatically writes all plot
output, or by saving a file created and named entirely by the user. TAPEIlIl

is easier to produce, but because the data on it is both packed and blocked,

T ——

a special program, ESPPLQT, must be used to plot it (see below), On the
other hand, a user-created file can be tailored specifically for its later use,

but requires more effort to generate.

1. Data Written onto TAPE11

ESP automatically writes all data stored in PLOT (either via *PRINT
statements or by PLOT (i) = expression, refer to Section VI-B-1l) onto a
logical file named TAPEIll, which is saved until run completion, plotted from
by *GRAPH, and then released. To save this data after job termination,
the user must transfer it to a magnetic tape. Once stored on magnetic tape,

the data may be plotted at any time using program ESPPLQT.

ESPPLQT is a compiled (binary) main program which is to be run at
some time later than the ESP run whose data it is to plot. It may be used to
plot up to 10,000 points and allows the user to determine the time intervals
to be plotted. Every point or every nth point may be plotted, and symbols
may be placed on the plots at any At interval specified by the user. Steps
required for its use are the following:

a, Make certain that the first element of the array PLOT

stored by the ESP run is time (T),

b, Request the actual tape containing the data and assign it
the logical name TAPEIlIL,

P ¢ -

c, Execute program ESPPLOT (See control cards in example below,)
d. Write the necessary *Control cards according to the formats
given below,
ESPPLOT *CONTROL CARD FORMATS: All *Control cards must start in

column 1. Non-* cards may occupy columns 2 through 72, except title cards,

which are limited to columns 1 through 50,

*MAXPLOTS n (n must be the same as n on the 5
*MAXPLOTS card appearing in the ‘
ESP run, Default value is 10,)

*NLOCAL n (Every nth data point is to be plotted.
Default value is 1. May be changed at
any time.)

*IMAX m T . T veo T . T
min max min max
. 1 1 m m
or '
#*IMAX m ALL T . T {The next m sets of *GRAPHS are to be
min “max

%lotted for the m sets of intervals gwen.
min, and T 5% apply to the nth *GRAPH
encountered., If the m sets of graphs are
all to be plotted for the same Ty,j, and
Tmax» enter ALL followed by Ty,;, and
max- T0 change this, use *RETURN

first: see example,)

*TICKPLOTS At (The symbol ¥V will be placed on the
plotted line every At seconds, The
default is no symbol,)

- *GRAPH nx ny [type] [size] [grid] [scaling] (See *GRAPH descrip-
[Title] tion, Section VI-B-2
[x-title] above.)

[y-title]

po> B e 2 el G e v e edee ey 0y

#s 4 la

*RETURN (End this segment of instructions and
begin another,

*IMAX, *TICKPLOTS, and *GRAPH
must be reentered.

*NLOCAL will retain its value but may
be changed.

*MAXPLOTS will retain its value,)

EXAMPILE:

ATTACH, ESPPLOT, 2ESPPLOT,
ATTACH, SUBLIB, 2ESPFTN.
ATTACH, PLOTLB, 3FTNPLOT LIB.
LIBRARY, SUBLIB, PLOTLB,
(Request TAPEll saved by ESP run) |
ESPPLOT,
HARDCPY,
EOR
*MAXPLOTS 12
*NLOCAL 10
*TICKPLOTS 0.2
*xIMAX 2 ALL 0, 10,
*GRAPH 1 9 TYPEF
ETA VS TIME
*GRAPH 9 10
ETADOT VS ETA
*RETURN
*NLOCAL 20
*xIMAX 3 50. 100, 50, 100, 0, 100,
*GRAPH 1 2 TYPEF
! *TICKPLOTS 5.
*GRAPH 1 3 TYPEF OVERLAY
THETA AND TAU VS TIME
*NLOCAL 10
*GRAPH 2 5 TYPEF
X VS THETA
THETA
X
*RETURN
EOF

6-15

i\ 5’
N |

B <<qotin b, - ' . e

A e sl 1 S RN 321 i

In the above example ESPPLOT expects TAPELl to have 12 variables
stored on it, of which the first is time, Selecting every 10th data point and
placing a tick every 0.2 seconds, it will produce filmplots of variables 9 vs
time and 10 vs 9 from T=0. to T=10,seconds and label them ETA VS TIME
and ETADOT VS ETA, respectively.

A *RETURN card appears next so that IMAX can be changed. Note
that IMAX in this section specifies 3 time intervals and therefore 3 *GRAPH
cards follow it. However, only 2 plots will result, as the first two are
overlaid, Selecting every 20th plot point, it will plot variable 2 vs time from
time = 50, to 100, with no tick marks, Then it will overlay variable 3 vs
time on the same grid with tick marks every 5. seconds and label this plot
THETA AND TAU VS TIME. Finally, using every 10th data point, it will
plot variables 5 vs 2 from time = 0. to 100, with tickmarks every 5, seconds,
and this plot will have X VS THETA on top, THETA on the X-axis and X on
the y-axis., A final *RETURN card indicates the end of the job.

2. Data Written onto User-Named File

To produce a saved data file which matches some particular user for-
mat, the user must declare and write his own file. To do this the following
steps are necessary:

o Request that a magnetic tape be allocated to the ESP program
and given a logical file name by using the proper control cards,

® Declare the logical file name by supplying the main program
(ESP's PRECOPMP normally writes it), and adding the logical file
name to the PRQGRAM card (see example below),

[J Write desired data on the file by using an unformatted WRITE (1fn)
list statement within *OUTPUT...*ENDOUT. Remember that the
output subroutine is called at various times for plotting and
printing (refer to Section VI-C), and that any time the user does
his own WRITE statements he must consider the frequency with
which he wants to "write" and allow for it by testing PRINT (1)
and acting accordingly.

L U A N5t L G VI) 60 2R et S S it S T g

PR aY

EXAMPLE:

[control cards]

[control card additions to request and save a tape and to name it
TAPE20, according to current operating system manual.]

7-8-9

PROGRAM MAIN(TAPEI12, TAPEL]l,@UTPUT, INPUT=TAPE12, TAPE20)

EXTERNAL DERIVS, ADAMS, ADMNTP

CALL ESPIIL (DERIVS, ADAMS, ADMNTP)

END

[User supplied subroutines]
*DERIVS

[Equations defining derivatives and switches] :
*ENDDERIVS ;
*@UTPUT ‘

[Equations defining outputs]

If (PRINT(1l) .NE. SHPRINT) GO TO 5 :

WRITE(20) T, Y(l), Y(2), Y(3), ®OMEGA, THETA l
5 CONTINUE i

[More equations defining output, *PRINT, etc.]
*ENDQ@UT

#r ot e AU

Notice that the MAIN program, here supplied by the user, is identical
to the one normally written by PRECOMP (see Appendix D-3-b) except for
the addition of TAPE20 to the PROGRAM card, and that the MAIN program

precedes all user subroutines and the *DERIVS section. Also notice that

e et e st

the WRITE statement is placed inside the output routine (Do not place it in
the derivatives section!) and, in this case, that it will be executed only
when QUTPUT iz called for print purposes, which will be at the print inter-
vals specified on the *RUN card and at switch times if NDISPR > 0, This
example will produce a file, TAPE20, with six values per record, one

record for each print time, which will exist on magnetic tape after run

.. termination and which may be read into another program for input or plot-

ting by an unformatted READ statement,

3
%
; VIL INPUTS . v v b e v i e e e e e e v e e e e et e e e e e e 7-1 §
§ r4
A, Number of Derivatives, Start/Stop Times, and 5
: Print Intervals (*RUN) v v v v v v o o o 0 v o 7-1
B. Initial Conditions: Known Constants (*IV) 7-2 3
C. User Parameters: Known Constants (*PAR) 7-3
D. Initial Conditions and Inputs to be Computed ‘
(*ICCOMP, .. *ENDIC) . . ¢ v v v v v v v e vt s e v 7-5
E. Data Input from Cards or User Files -0
A F. Inputs to Control Accuracy . . .« . ¢« .« o o « o o . . -7
G. Miscellaneous Inputs « . . . o o000 . 7-7
‘ 1. Print Headings . . « v v v ¢« v o v v v o 0 v o o 7-8
2. Title for Printed OQutput « « . . .« . .« . . 7-8
3. Program Control v v o o o v o0 7-9
3 .
1§
f
?

SR

SECTION VII

INPUTS

The inputs needed for an ESP program may include any or all of the
following: (1) the number of derivatives, (2) the starting and ending values
for the independent variable T, (3) the print interval(s) desired, (4) the initial
conditions (initial values) for the Y's, (5) variables which determine solution
accuracy, (6) miscellaneous inputs which influence program control and
format, and (7) any user variables which may be needed to compute initial
conditions, derivatives, or switching characteristics. The number of inputs
required and the manner in which they are supplied will depend upon the com-
plexity of the user's problem and the degree of flexibility he wishes to build
into the program,

A. NUMBER OF DERIVATIVES, START/STOP TIMES, AND
PRINT INTERVALS (*RUN)

The only inputs required by every ESP job are the exact number of
derivatives, the initial and final values of the independent variable and the
printing interval(s). These are specified on the *RUN card, which is re-
quired for every run and is always the last card except for *GRAPH, *STQP
or *RETURN (refer to Section VII-G-3). Notice that the print interval may
be changed several times during the run, and that tfi > t:o. (Refer to
Appendix F-1l-e for directions on running the solution backward,) The

format is

*RUN neq to hprintl tf hprmt2 tf oo $

1 2
where
neq is an integer constant specifying the number of dependent
variables (Yi)' It should equal the largest subscript of DY
and must be corrected if derivatives are 4dded or deleted,
t, is a constant specifying the initial value of the independent

variable (T) (typically 0.)

is the printing interval to be used until the independent

prmti variable (T) reaches tf
i
t is either the value of T at which the solution is to stop or,
i if it is followed by hprint tf ,it is the time at which the
print interval is to be changed.
$ is optional and terminates the information on the card
EXAMPIES:
1. *RUN S5 0, 0.5 10. $
This runs the solution from 0, to 10.0, printing every 0.5
seconds, solving for . dependent variables (Y.'s).
2. *RUN 12 2,0 0.25 8.0 0.5 20,0 %

This solves for 12 dependent variables, starting at 2.0 seconds
and printing every 0,25 second until T reaches 8,0 and then
printing every 0,5 second until T reaches 20,0 seconds, at
which time the solution stops,

B, INITIAL CONDITIONS: KNOWN CONSTANTS (*1V)

If the user wishes the initial values of all the dependent variables (Y.l's)
to be zero, he does nothing. If he wishes any to be nonzero constants, the
simplest way to input them is on the *IV card, which is placed among the
run time data cards, IV's retain their value until they are reset on another

#IV card or within the user's coding. The format is

xI7 '1V1 iv2 R £ $

where

ivi is either a constant alone or Yi = constant, Values are
separated by blanks, If a constant appears alone, itis
assumed to be the initial condition of the next dependent
variable, If no value is given for a dependent variable,
it is assumed to be zero.

$ is a required terminator

AD=A084 676 AEROSPACE CORP EL SEGUNDO CA ENGINEERING GROUP Fls 972
THE ECLECTIC SIMULATOR PROGRAM (ESP) USAGE GUIDE.{U)
MAY 80 E R COFFEYs, H J WERTZ F03701-79-C-00!0
UNCLASSIFIED TR=0080(9320)-3 SD =TR-80-21

[0 e s
== 2

fze

L R

L

22 flis e

é

. .
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAI (1 STANDARDS 19630

g2t

s Va ln AR

AR B

g

EXAMPILE:
*IV. 0. Y6=3,0 6.5 8.2 YI10=3,0 $

produces: Y(1)=Y(2)=Y(3)=Y(4)=Y(5)=0,0,
Y(6)=3.0, Y(7)=6.5, Y(8)=8.2,
Y(9)=0.0, Y(10)=3,0 and any additional
Y (i)=0.0.

C. USER PARAMETERS: KNOWN CONSTANTS (*PAR)

An array named PAR of length 100 is created by ESP and automatically
passed by the statement COMMON/PARS/PAR(100) to the derivative, output,
switching, and initial computations routines for the convenience of the user,
Its main purpose is to permit the user to introduce parameters into his equa-
tions without having to worry about how they will be defined or passed to

each section, and to permit their values to be easily changed from run to run,

PAR values may be computed in ICC@MP (see below), but if known are
most easily input to the PAR array on a *PAR card which, like the *IV card,
is placed at the end of the program but before the *RUN to which it applies,
PAR's retain their values until they are reset on another *PAR card or within

the user'’s coding. They may be used at any time by name, i.e.,, PAR(3),

WARNING

PAR's must not be functions of T. Nonconstant PAR's used as
inputs to SWTCH's or SWMEM's will cause errors in the deter-
mination of switching times, and use of PAR to pass nonconstant
values to be printed will cause discrepancies in printed values,

The format is the same as for *IV

*PAR par, par, par ... par_ $

L 4 L [4

par; is either a constant alone or Pi = constant., Values are
separated by blanks. If a constant appears alone, it is
assumed to be the value of the next PAR(i). If no value
is given for a PAR(i), it is assumed to be zero.

$ is a required terminator

EXAMPLES:

1. *PAR P2=6.75 4.0 P5=8.2 §$

This gives: PAR(1)=0,0
PAR(2)=6.75
PAR(3)=4.0
PAR(4)=0,0
PAR(5)=8,2

2. Use of the PAR array to change parameters easily in a series of pro-

gram runs is illustrated in the following example:

If one of the derivative equations is
DY (3)=SIN(15.) * Y(1) + C@S(20.)*Y(2) + SIN(25,)*Y(3)

and it is desired to vary the angles over a range of values, the

derivative equation can be written
DY (3)=SIN(PAR(1))*Y (1) + COS(PAR(2))*Y(2) + SIN(PAR(3))*Y(3)

and the following *PAR cards used, one per run, without changing
the equation

*PAR 15.0 20.0 25.0 %

*PAR 30,0 35.0 40.0 $

*PAR 72,0 75.0 78.0 %

7-4

[—

*PAR and *IV cards are particularly useful in making multiple runs,
that is, in making several runs of the same set of equations as one job,
varying only the initial conditions, PAR's, or perhaps run times from one
run to the next (see Appendix F-1, "Multiple Runs"). Note that since PAR's

and IV's retain their values from run to run within a job until they are reset

by the user, only those being changed for a particular run need to be redefined.

D. INITIAL CONDITIONS AND INPUTS TO BE
COMPUTED (*XICCOMP.. . *ENDIC)

If any computation is necessary to set initial conditions or parameter
values, the user will need to write an initial computations section into his
coding., The start of this section is signaled by the card *ICCOMP, and the
end is signaled by *ENDIC. Between these two cards, standard FORTRAN
and WHELP statements may be used, and their sequence is governed only
by the usual rules of FQRTRAN and WHELP, All statements in this section
will become part of the initial computations subroutine, ICCOMP, written by
the ESP precompiler program, PRECQOMP,

This subroutine is executed once (and only once) per run, so it is the
proper place to perform any operation that is to be done only once before
starting the solution, such as computing PAR's, computing initial values,

reading in data, or rewinding tapes.

*ICC@MP. ...*ENDIC may be used in addition to or in place of *PAR
and *IV cards. Since the resulting subroutine is executed after *IV, *PAR,
and *RUN have been encountered and processed, the user may input constants
via *PAR or *IV and then safely use them on the right-hand side of expres-
sions within *ICC@MP,

The program segment *ICCOMP, ., *ENDIC should be positioned after
all user supplied routines, but before all run time cards such as *IV, *PAR,
or *RUN (refer to Appendix A-3 for deck structure).

—

EXAMPILE:

*ICCOMP
DIMENSION R (6)
EQUIVA LENCE(PAR(1), R), (PAR(7), RD), (PAR(8), DR)
DATA PI/3.14159/
RD=180, /PI
DR=P1/180.
C INPUT R ANGLES AS PARS IN DEGREES AND CONVERT HERE,
DO 5 I=1,6
R(I)=DR*PAR(I)
5 CONTINUE
*ENDIC
«xPAR 10. 20, 30. 40, 50. 60, §$
*RUN 3 0. 0.5 10.0 $

E. DATA INPUT FROM CARDS OR USER FILES

Because an ESP job sometimes requires the input of data which cannot
be conveniently handled by *PAR cards or DATA statements in ICCOMP, the
user also has the option of reading it in with READ or NAME LIST statements.
The data itself may either be on cards as part of the user's deck or it may
be in the form of a user-created file (stored on magnetic tape or disc

storage). In either case, the best place to read it from is within *ICCOMP. ..
*ENDIC.

If the data exists on a manageable number of cards, the data cards may
be placed immediately after the *RUN card(s) for the case(s) to which they
apply. Since PRECQMP copies all cards beginning with the first run time
control card onto TAPE 12, data cards so introduced will exist there during
job execution along with the normal run time control cards, These data

cards may be read as if they were on the standard INPUT file, e.g., READ 100,
A,B,C.

NOTE

The user must take care to read exactly the correct
number of cards since proper execution of *GRAPH or
any other run time cards depends on the proper position-
ing of the input file. Also, input data may occupy only

the first 72 columns, as columns 73-80 will not be copied
to TAPE 12,

7-6

e oo
AN R R

. K *

Sometimes, however, it may be more convenient to read input data
from the user's own file, This would be true, for example, if the amount of
data is very large, if it is necessary to test for end of file to terminate
reading data for a case, or if {i._ user already has the data on a stored file
of some sort, If this is the case, the user should:

e (Create and save the data file (if it does not already exist), being
sure to write in End-of-Files as he will need them,

e Add the proper job control cards to assign the saved file to the
job and give it a logical name, say TAPEn,

e Write his own MAIN program (refer to Appendix D-3-b), adding
TAPEn to the files declared on the PRQGRAM card.

¢ Read the data from the file in ICCOMP by using

READ (n, fprmat) list or [formatted read]
READ (n, name) [namelist read]
READ (n) list [unformatted read]

For more on data input used with stacked or multiple runs, refer

to Appendix F,

F. INPUTS TO CONTROL ACCURACY

In addition to the inputs described above, there are several optional
inputs which may be used to control the accuracy of the solution and the timing
accuracy of discontinuities. All have default values but may be user-defined
by means of special control cards placed in any order, among the run-time
data cards, that is, after the *DERIVS, *@GUTPUT, and *ICC@MP sections,
but before *RUN, *EPS and *Q control the solution accuracy directly and are
described in Section IV-A-4, *HSW, *HSWM, and *HSWE are used to control
the allowable timing error in SWTCH's, SWMEM's, and EVENT's, respectively,

and are discussed in Section V-F,

G. MISCELLANEOUS INPUTS

Several other special input cards will be read and interpreted by
PRECQMP, Their use is optional and they are provided mainly for the con-

venience of the user.
. - ¢ é

7-7

1. Print Headings

The print labels which appear on automatically formatted output are
k. normally specified on the *PRINT card (refer to Section VI-A) from which
: they are read by PRECQPMP and written onto a run-time data card called
*HEADINGS, which the user will notice is printed with the other run time
data cards at the beginning of his output. The user may, however, supply
the *HEADINGS card himself, in which case his card completely supersedes
the card written by PRECOMP. The number of labels on this card is the
number of output variables which will be printed, even if it is less than the
number of variables specified on the print card, (Thus a *HEADINGS card

with no labels can be used to suppress printout.) The format is

*HEADINGS label 1 label

» label3 . labeln $

where
*HEADINGS starts in column 1

labeli € 10 hollerith characters (8 on IBM) with no embedded
blanks, which will be used to label the ith output variable,

‘ n is the number of variables that will be printed. It should
] be the same or less than the number of variables listed on
the *PRINT card.

$ is a required terminator

2. Title for Printed Output

T Placing the *TIT LE card among the run-time data cards, somewhere
before the *RUN card, causes whatever is in columns 8-71 to be used as the

title printed at the top of every page of output. The format is

*TITLE [title]

7-8

co

3. Program Control

The following two cards may be used anywhere among the run-time data

cards, to facilitate program control:

*RETURN

*STOP

This causes program control to return to
PROGRAM MAIN at the point it is en-
countered, typically following a *RUN or
*GRAPH command, It thereby permits
execution of other statements in MAIN,
such as calls to other subroutines or
printing which is to be done only at the end
of a run (see Section VI-C-5),

This causes job termination at the point it is
encountered, It should be used after *RUN if
no *GRAPH follows and normal termination is
desired at that point.

APPENDIX A

CARD FORMATS AND DECK STRUCTURE

3 A-1, General Format Rules. ¢ ¢ ¢ ¢ ¢ ¢ s ¢« o o+ A-l
A-2, Summaryof Card Formats « . . ¢« ¢« ¢+ o o« = « + . A-2 ;
A-3, User's Deck Structure. v ¢ ¢« ¢« ¢ s ¢ o « o o+ . A-4

JHNLINYLS HO3a

APPENDIX A

CARD FORMATS AND DECK STRUCTURE

i A-1, GENERAL FORMAT RULES

?‘ General rules regarding ESP card formats are the following:

. ® All ESP "shorthand" cards begin with an asterisk (*) in

: column 1 and the first letter of the key word in column 2,
h

E - ® Items on cards are separated either by blanks or by $

- depending on their nature. (See specific cards.)

|

3

) Fixed length cards generally require no terminator, but
those of variable length are terminated by a required $.

f ® FOQRTRAN statements begin in column 7 and follow the usual
‘ rules of FORTRAN,

® WHE LP statements follow the usual format of WHE LP
{Appendix H).

General rules regarding use of comment cards:

° Comment cards are denoted only by a C in column 1.
They may appear anywhere within:
e user (sub)programs

® the derivative computation section, delimited by *DERIVS
and *ENDDERIVS

¢ the output routine delimited by *QUTPUT and *END@UT

e the initial computation routine delimited by *ICCOMP
and *ENDIC

¢ the run-time data cards (provided they are between
command cards),

NN OERO I, >

 J Comment cards may not be used:

e within the data picked up in response to a command card,
e.g., within the *PRINT specification.

* between any routines, i.e., user routines, after
*ENDDERIVS, *ENDQ@UT or *ENDIC, or after *PRINT
wheuot within QUTPUT.

A-1

e

: A-2, SUMMARY OF CARD FORMATS ¢
: Section
o Reference

ey

® Defining derivatives and discontinuities:

N

1

sk I

*DERIVS 1 E

*ENDDERIVS |

*BLOCK 1 B Y(i) e, $ III-C §

sk i 1 - H

BLOCK 2 a a, ﬂl ﬂo Y(@i) Y(3) e $ III-C L

* *SWTCH i 0+ $ 0_ $ controli $ V-A ‘
*SWMEM i inputi $ V-B é

® Defining output and initial computations: §

*@QUTPUT VI-A_2 ;

*ENDQUT i

*PRINT labell=expressionl $... labe1n=expressionn $ $ VI-A-1 .4

st f

*ICC@MP VII-D |

*ENDIC ,'

|

® Run-time data inputs:

t

*IV '1v1 in"'ivn $ VII-B i

| *PAR p| p,...p_ $ VII-C [
| *SWITCHES n VoD-1-b r
i *SWMEMCNT n :
| *NEVENT n V-C g
. *SWMEMSET n, n,...n/ V-B-4 ;
: *SWMEMDATA V-B-3

l i) ¢ cp.eicyg $
' 2 €1 Szee-cpp ¥

< Ih €1 S2e-c ¥

Section
Reference
*MAXPLOTS n VI-B
*RUN neq t, hpr'mt1 tf, hprint, tf, ... $ VII-A
® Accuracy control:
*EPS € IV-A-4
#Q ql qZ e qn $ IV-A-4
*HSW hl h2 hn $ V-F
*HSWM hl h2 hn $ V-F
*HSWE h h, ... h_$ V-F
® Miscellaneous inputs:
*TITLE-- - -title---- VII-G-2
*HEADINGS label1 label2 labeln $ VII-G-1
*STQP VII-G-3
*RETURN VII-G-3
RK2
*METHQ@D RK4 IV-A-1
PC
® Plotting:
*GRAPH n_ ng [size][grid][scaling][type] VI-B-2
[title]
[X title]
[Y title]

'
b
¢
i
¥

A-3, USER'S DECK STRUCTURE

(CDC) (IBM)

[Job control cards JCL cards
7-8-9 card ‘ \ //SYSIN DD
RK2
[*METHQD RK4

PC

[PROGRAM MAIN (if written by user) *PROGRAM ON IBM

SWINPT, SWMEMN, EVENTS, and NQTIFY, if the user pro-

‘:All user-supplied subroutines, including ICCOMP, QUTPUT,
vides the entire routine. (See Append1x C-4 reserved names.)

cluding all *SWTCH, *SWMEM, and *BLOCK statements

{Coding which defines derivatives and discontinuities, in-
used, beginning w1th DERIVS and ending with *ENDDERIVS,

g [oding which defines the output: either *PRINT or
*@QUTPUT...*ENDOUT,
{ oding which defines the initial computations: *ICC@MP. ..
*ENDIC.
Run-time data cards, in any order, including *IV, *PAR,
*SWITCHES, *SWMEMCNT, *SWMEMDATA, *SWMEMSET,
*EPS, *Q, *HSW, *HSWM, *HSWE, *NEVENT, *MAXPLOTS
1% *RUN
:
4 [Any input data to be read by a READ format, list or
READ namelist,
[*GRAPH
[*ST@P or *RETURN
/;',:
: 6-7-8-9 JCL cards
. /:::

‘! b
: Only those sections or cards marked by an * are required. All others are
optional,
, - 1The order of these three segments, *DERIVS, *QUTPUT, and *ICCOMP,

is interchangeable.

iy ke

s Ay T T

!
‘.i}
¥
: !
 §

T W T e i o e g i .

APPENDIX B

CONTROL CARDS AND FILE USAGE

CDCControlCards ¢ v ¢« v v v v v o oo o v eu. B-1
IBM Control €Cards . . ¢ v v v v v v v o ¢ o o v s o o o o -2
File Usage for ESP without WHELP . , B-4

File Usage for ESP with WHELP B-5

/
DALLNOS “8 XOCMNeddlY

39VSN 314 ANV SAYVO

\

LIV e

-

PN

0“

PO AT T A~ e smiem s <+ L L o .

APPENDIX B

CONTROL CARDS AND FILE USAGE

B-1, CDC CONTROL CARDS

(SCOPE 2. 15 OPERATING SYSTEM)

NOTE

The following control card examples apply to the
operating system in use at the publication date of
this manual. Subsequent changes in operating sys-
tem or control cards required will be documented as
they occur.

ESP USED WITH WHELP

$PGMR,....

$PARAM....

ATTACH, LIBl, 2NEWRESP,
ATTACH, LIB2, 3FTNPLQT LIB.
LIBRARY, LIBl, LIB2,
PRECOMP.

WHE LP, IMSQRC,

FTN, I=TAPEIS,

LGQ@.

ESP USED WITHOUT WHELP

$PGMR....

$PARAM....

ATTACH, LIBl, 2NEWRESP,
ATTACH, LIB2, 3FTNPLQT LIB.
LIBRARY, LIBl, LIB2.
PRECOMP.

FTN, I=IMSORC.

LGQ.

To get hard copy of film plots, add after LG@.: HARDCPY.

|
|
|
!
i
1
I
?

B-2,

IBM CONTROL CARDS (JCL)

(IBM 3033 MVS OPERATING SYSTEM)

ESP WITH WHELP

00010

00020

00030

00040

00050

00060

£ 00070
. 00080
] 00090
; 00100
00110

. 00120

1 00130
00140

00150

00160

00170

, 00180

g 00190
! 00200
; 00210
00220
00230
00240
00250
00260
00270

//2185 JOB...
// MSGLEVEL...
/*J@BPARM ACCT...
// EXEC PGM=PRECOMP
//STEPLIB DD DSN=#4606, ESP. LIB(PRECOMP), DISP=SHR
//SYSPRINT DD SYSQUT=A
//TAPEll DD DSN=&TAPEIll, DISP=(NEW, PASS), UNIT=VIQ,
/! SPACE=(TRK, (10,5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
//TAPE12 DD DSN=kTAPEI!2, DISP=(NEW, PASS), UNIT=VIQ,
// SPACE=(TRK, (10,5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
//TAPE14 DD DSN=&&TAPEIl4, DISP=(NEW, DELETE), UNIT=VIQ®,
/! SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
//TAPEl6 DD DSN=&&TAPE16, DISP=(NEW, DELETE), UNIT=VIQ,
/! SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
//SYSIN DD DSN=fUSERID, FILENAME,DATA, DISP-SHR
(if user input resides on a permanent file)
or
//SYSIN DD *
(ESP source program cards)
/! EXEC PGM=WHELP
//STEPLIB DD DSN=#4606, ESP. LIB(WHE LP)}, DISP=SHR
/ /SYSPRINT DD SYS@UT=A
//SYSIN DD DSN=&TAPELl], DISP=(®LD, DELETE)
//TAPE15 DD DSN=&TAPE!S5, DISP=(NEW, PASS), UNIT=VIOD,
SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL~=80, BLKSIZE=800)
TAPEll DD DSN=&TEMP, DISP=(NEW, DELETE), UNIT=VI®,
SPACE=(TRK, (10, 4)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
EXEC FORTXCLG, CPARM='NOF@RMAT, AD(DBL), MAP', COND, LKED=EVEN,
COND.G@=EVEN, LPARM=LET
FORT,SYSIN DD DSN=kTAPEI5, DISP=(@0 LD, DELETE)
LKED.SYSIIB DD DSN=@QPUS,P077.SUBLIB, DISP=SHR
G@.FT11F00l DD DSN=&&TAPE!l], DISP=(NEW,DELETE), UNIT=VI@,
SPACE=(TRK, (10, 5)), DCB=(RECFM=VBS, BIKSIZE=6440, LREC L=16004)
GO.FT12F001 DD DSN=4TAPEI1Z, DISP=(QLD, DELETE)

R
D e

T N T

e ez R s e S r‘»:é.u.,,m...,,».‘ o i R

ESP WITHOUT WHE LP

z185 J@B...
- ;7 MSGLEVEL...
» /*JOBPARM ACCT...
00010 // EXEC PGM=PRECOMP
00020 //STEPLIB DD DSN=#4606, ESP, LIB(PRECQMP), DISP=SHR
00030 //SYSPRINT DD SYSQUT=A
00040 //TAPEll DD DSN=&TAPEIl!l, DISP=(NEW, PASS), UNIT=VIQ®,
00050 // SPACE=(TRK, (10,5)), DCB=(RECFM=FB, LREC L=80, BLKSIZE=800)
00060 //TAPEl12 DD DSN=4TAPE!2, DISP=(NEW, PASS), UNIT=VIQ,
. 00070 // SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LREC L=80, BLKSIZE=800)
00080 //TAPEl4 DD DSN=4&TAPEl4, DISP=(NEW, DELETE}, UNIT=VIQ,
00090 // SPACE=(TRK, (10,5)), DCB=(RECFM=FB, LREC L=80), BLKS1ZE=800)
00100 //TAPEl6 DD DSN=k&TAPEIl6, DISP=(NEW, DELETE), UNIT=VIQ,
00110 // SPACE=(TRK, (10,5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
//SYSIN DD DSN=#USERID.FILENAME.DATA, DISP=SHR
(if user input resides on a permanent file)
00120 or
//SYSIN DD *
(ESP source program cards)
00210 // "EXEC FORTXCLG,CPARM='N@GF@RMAT, AD(DBL), MAP' COND. LKED=EVEN
00220 // COND,G@=EVEN, LPARM=LET
00230 //FQRT.SYSIN DD DSN=&TAPEIl], DISP=(@ LD, DELETE)
. 00240 //LKED.SYSLIB DD DSN=@QPUS, P077.SUBLIB, DISP=SHR
. . 00250 //G@.FT11F001 DD DSN=&&TAPEI!l,DISP=(NEW, DELETE), UNIT=VI@®,
Q0260 // SPACE=(TRK, (10, 5)), BCB=(RECFM=VBS, BIKSIZE=6440, LREC L=16004)
00270 //G®.FT12F001 DD DSN=&TAPE!2, DISP=(0LD, DELETE)
/%

»

¥
L)

! NI S | it & e’ ke ds el e o b e klgroe s e LT .,

e P e e O Yo g ol [

B-3, FILE USAGE FOR ESP WITHOUT WHELP

INPUT = user's deck

!

PROGRAM PRECOMP(INPUT,QUTPUT, IMSORC, TAPE11 = IMSDRC,
TAPE12, TAPEG6O = INPUT, TAPE14, TAPE16)

!

IMSORC = FORTRAN routines
resulting from PRECOMP

i

!

TAPE12 = all run-time data
cards and any user data cards

'

PROGRAM MAIN(TAPE11, TAPE12, INPUT = TAPE12, QUTPUT)

5 I

TAPE11 = plot data

'

@QUTPUT = print data

|
!
!
:
¢

B-4, FILE USAGE FOR ESP WITH WHELP

INPUT = user's deck

v

PROGRAM PRECOMP(INPUT, QUTPUT, IMSQRC,TAPE11 = IMSORC,
TAPE12, TAPEG60 = INPUT, TAPE14, TAPE16)

! |

IMS@QRC = results TAPE12 = all run-time data :
of PRECOMP cards and user data cards]

.

- 1
E'»

= .

PROGRAM WHELP(INPUT, QUTPUT, TAPE11, TAPEI1S,
TAPEG60 = INPUT, TAPEGSI = QUTPUT)

% TAPE1S = user's rogram after pro-| | TAPE12 = all run-time data
s ; cessing by PRECSM and WHELP cards and any user data cards

PRPGRAM MAIN(TAPE11, TAPE12, INPUT = TAPE12, QUTPUT)

] !

. TAPE11 = plot data QUTPUT = print data

B-5

APPENDIX C

PROGRAM VARIABLES AND RESERVED NAMES

Cc-1. Variables Passed Through Calling Sequences Cc-1
Cc-2, Variables Passed Through Common Blocks Cc-2

C-3. Alphabetical List of Common Blocks and
Their Contents . . . & v v v v v v 0 o o o o 0 s o s 2 o o s C-3

C-4, Reserved Subroutine Names . , . . . ¢ ¢ ¢ ¢ ¢« ¢ o o s & & C-11

Al .
SINVN QaAY3S3Y ANV
STAVINVYA NYHOOUd

RN

C-1. VARIABLES PASSED THROUGH CA LLING SEQUENCES

APPENDIX C

PROGRAM VARIABLES AND RESERVED NAMES

Variable

DY(100)

IEVENT

PLAT(100)

PRINT (60)

STQP

T

VALUES(50)

Y (100)

The derivative array

An integer indicating the number of the
EVENT being reported to SUBRQUTINE
N@TIFY

An array for storing the current.value(s)
of the plotted variables (Equivalent to
VPLAT in COMMON BL@CK UNIPI)

An array for storing the current value(s)
of the printed variables

A variable which stops the current run if
nonzero (Equivalent to T 2 TFINAL)

The independent variable, usually time

An array for storing the inputs to SWTCHs,

SWMEMs, or EVENTs

The dependent variable array

Routines to which
it is passed:

DERIVS
OUTPUT

NQTIFY

OQUTPUT

OUTPUT

DERIVS
@UTPUT

DERIVS
OUTPUT
ICCOMP
SWMEMN
SWINPT

SWINPT
SWMEMN
EVENTS

DERIVS
@UTPUT
ICCOMP
SWINPT
SWMEMN

T TR N R

U S

C-2. VARIABLES PASSED THROUGH COMMON BLOCKS

Variable

BUFFER(80)
COLCNT
CONSTS (50, 10)
DY(100)
DY(100, 9)
EPS
FIRSTP
FIXSTP

H
HEAD(60)
HHMAX
HHMIN
HMAX
HMIN

HP
HSW(50)
HSWE (50)
HSWM (50)
IFGRM(3)
ISWTYP
J LINE
JSTART
KFLAG
KSV
LINES
MF

MAX
MAXCHR
MAXCQ@L

Block Name

READIN
READIN
SWHPAR
BASIC
BLANK
MISCE L
RKCONT
STPCON
STPCON
UNIP2
HMAXMN
HMAXMN
STPCON
STPCON
STPCON
MISCEL
MISCE L
MISCEL
UNIP2
SWHPAR
UNIP2
STFPAR
STFPAR
SWHPAR
UNIP2
STFPAR
UNIPI
READIN
READIN

Variable

NDISPR
NEQ

NEVENT
NFIRST
NHEAD
NLGCAL
NOPLQT
NPAGE
NPQ@INT
NTAPI11
NUMSTP
QUT(60)
PAR(100)
PLQT (2000)
Q(100)
STOP(1)
SCR1(200)
SWDBUG
SWMEM(50, 4)
SWSET (50)
SWTCH(50)
TO

TERMCH

TF

TIT LE(8)
TPDAY

TP

VA LEVS (50, 2)
VAIMEM(50, 2)

Block Name

NDISPR
MISCEL
SWTCHS
READIN
UNIP2
UNIP1
UNIPI
UNIP2
UNIPI
HMAXMN
HMAXMN
UNIP2
PARS

B LANK
MISCEL
MISCEL
BLANK
SWDBUG
SWTCHS
SWHPAR
SWTCHS
BASIC
READIN
BASIC
UNIP2
UNIP2
BASIC
MISCEL
MISCEL

} Variable Block Name Variable Block Name
MAXDER STFPAR VA LUES(50, 2) MISCEL
MAXMEM SWTCHS VPLOT(100) UNIP1

' MAXSWS SWTCHS Y (100, 9) BLANK
MXL UNIP2 YO0(100) BASIC
NALTER SWHPAR YPRNT(100) BASIC
NCHNG SWHPAR

C-3. ALPHABETICAL LIST OF COMMON BLOCKS AND
THEIR CONTENTS

NOTE

Blocks SWTCHS and PARS are written by PRECOMP as

A part of SUBROUTINES DERIVS, QUTPUT, ICCOMP,

. SWINPT, and SWMEMN. All other blocks must be included
by the user if he wishes to reference them. Block lengths
are given in octal words for CDC use and hexadecimal bytes
for IBM use since these are the bases used to list block size ;
on maps generated by the two computers, Decimal size of
each block can be easily obtained from the dimensions given
with each variable name,

Block Length

o o S

1
i CDC IBM
{Octal (Hex)

COMMON/BASIC/TO0, TF, TP, Y0(100), YPRNT (100), DY (100) 457 978

8

TO The initial value of the independent 1
variable

TF The current final value of the independent 1
* variable (May be changed by the user's
program)

TP The last print time 1

KR S R L gl E R e ol 1 AR i i

Block Length

CDC IBM
(Octal) (Hex)

YO0(100) The initial conditions to be used when 144 320
(next) *RUN is encountered, Set =0
in ESP.

YPRNT (100) The value(s) of the independent variables 144 320

at the last print time. After a run this
contains the "final" values of the Y's,

4

|

4 DY(100) The value(s) of the derivatives at the last 144 320
F' . print time., After a run this contains the

‘ "final" values of the DY's.

COMMON/BLANK/PLOT (2000), SCR1(200), Y(100, 9),

| DY (100, 99 7640 7D00
i | PLQT (2000) Plot buffer 3720 3E80
| SCR1(200) Used internally as working space 310 640
Y (100, 9) Y array, including past values of Y's 1604 1Ccz20
DY(100, 9) DY array, including past values of DY's 1604 1C20
COMMON/HMAXMN/HHMAX, HHMIN, NUMSTP, NTAPI11 4 18

HHMAX The maximum stepsize used thus far in 1 8

the run. Automatically printed at end of
run. May be tested or printed by user,
but not changed.

HHMIN The minimum stepsize used thus far in 1 8
the run. Automatically printed at end of
run. May be tested or printed by user
but not changed.

T NUMSTP The number of integration steps taken thus 1 4
far in the run, Automatically printed at
end of run. May be tested or printed by
user but not changed,

. NTAPI11 The number of data frames written onto 1 4
TAPEIL1 for plotting. It is automatically
printed at the end of the run,

_ ’The storage in this common block is used differently by different subroutines,
F-; but this describes the most common and generally relevant use. The user
‘ may wish at times to know the contents of this block, but should not alter them,

C-4

S e T Sy

Block Length

CDC IBM
(Octal) (Hex)

COMMON/MISCEL/STQP(1), Q(100), EPS, HSW (50), HSWM(50),
HSWE(50), VALUES(50, 2), VAILMEM(50, 2}, VALEVS(50, 2),
NEQ 1051

3 STOP(1) A variable which stops the current run if 1
' nonzero (equivalent to T 2 TFINAL)

k' ¢ Q(100) Q(i) is used to compute a maximum allow- 144
- able absolute error in Y(i). It is set
dynamically to MAX(Q(i), | Y(i)}).

EPS EPS is used to compute relative error in H
Y (i):

. error in Y(i)
EPS2) | S550 :

HSW(50) HSW (i) is the allowable timing error in 62
determining SWTCH(i), normally set on
the *HSW data card,

HSWM (50) HSWM(i) is the allowable timing error in 62
determining SWMEM(i), normally set on
the *HSWM data card.

HSWE(50) HSWE(i) is the allowable timing error in 62
determining EVENT (i), normally set on
the *HSWE data card.

R R TP

VALUES(50,2) VALUES(, 1) and VALUES(i, 2) store the 144
current and previous values of the inputs
to *SWTCH(i), alternately,

P VALMEM(50,2) VALMEM(, 1) and VALMEM (i, 2) store the 144
b current and previous values of the inputs
to *SWMEM (i), alternately.

o VALEVS(50,2) VALEVS(i, 1) and VALEVS(i, 2) store the 144
: current and previous values determining
‘ EVENT (i), alternately,

" NEQ The number of derivative equations to be 1
N integrated: set by the user on the *RUN
card,

YT

COMMO®N/NDISPR/NDISPR

NDISPR

A flag which controls printing at switching
points, If 0, no print at switch times; if 1,
one print at switch times; if 2, print and
plotting occurs on left and right of each
switch, (NDISPR = 1, nominally)

COMMON/PARS/PAR(100)

PAR(100)

An array for storing and automatically
transmitting user variables, which may be
easily input on a *PAR card.

COMM@PN/READIN/COLCNT, BUFFER(80), MAXCQL,

MAXCHR, NFIRST, TERMCH

ﬂ‘—" ."-'-' "

COILCNT

BUFFER(80)

MAXCOL

MAXCHR

NFIRST

TERMCH

Used internally by READIT: points tc
beginning of next scan.

Used internally by READIT: the current
card in 80A1 FORMAT.

Used internally by READIT: the last
column to be scanned.

Used internally by READIT: maximum
number of characters to be picked up
in a hollerith field

Used internally by READIT: points to
beginning of field just read.

Used internally by READIT: any hollerith
character to mark the end of a field.,

COMMON/RKCONT /FIRSTP

FIRSTP

A flag set to 1.0 by routine ESPCT L if

Runge-Kutta is used to indicate the beginning

of each step in fixed step mode or the

beginning of each pair of steps in the variable

step mode, Otherwise, FIRSTP=0.

Block Length

CDC
(Octal)

1

1

144

144

125

120

IBM
(Hex)

4

4

320

320

158

140

Block Length

CcDhC IBM
(Octal) (Hex)

COMMON/STFPAR/MF,KFLAG,JSTART, MAXDER 4 10
MF Used internally 1 4
KFLAG A flag returned from the integration i 4

routines to indicate success or failure
of the integration step just taken.
KFLAG=1 indicates error exceeded
bounds and a warning message willbe

printed,
b
‘ JSTART A flag used to indicate the start (restart) 1 4
3 B or continuation of integration., JSTART=0

when integration is starting or restarting.
JSTART=1 when integration is continuing
on from previous steps,

MAXDER Used internally 1 4
COMMON/STPCON/HP, H, FIXSTP, HMIN, HMAX 5 28
HP The current printing interval, This is 1 8

normally changed from the *RUN card
but may be changed by the user's pro-
gram during the run and must be > 0,

e AN 5.
o)

The current integration stepsize. If 1 8
set # 0 in ICCOMP this H will be tried
first.

FIXSTP The actual stepsize selected by the user 1 8

for fixed stepsize integration using all
Runge-Kutta

HMIN A lower limit on the stepsize, nominally 0, 1 8
May be set by user.

HMAX The maximum stepsize permitted, 1 8
nominally 1,0E50. May be set by user.

-

A b o w o M AAAIN. AriRY T ——— s - = " 1

“
£

Block Length

CDC IBM

(Octal) (Hex)

COMMQ@N/SWDBUG/SWDBUG 1 4

‘ SWDBUG Logical variable which controls printing of 1 4

data for switch debugging., If SWDBUG =

.FAISE, (default) no print., If SWDBUG = \
. TRUE, print data to aid in debugging of ;
switches, '

COMMON/SWHPAR/NCHNG, NALTER,ISWTYP, KSV,

CONSTS(50, 10), SWSET (50) 1052 1078

NCHNG A flag indicating whether any switches 1 4 ¥
have just changed state during an integra-
tion step

NALTER A flag used internally by SWTCHE 1 4

- ISWTYP Used internally 1 4
KSv Used internally 1 4
CONSTS(50,10) CONSTS(, j) is the constant Cj for 764 FAO

SWMEMi, Although C@NSTS are normally
defined on the *SWMEMDATA card, the
user may include common block SWHPAR
and define the CONSTS in ICCOMP. (No
error test is made on CQNSTS so defined.)

. SWSET (50) The vector of values used to initialize 62 c8
g SWMEMS in saturation rather than dead-

band, Normally input on the *SWMEMSET

card,

COMMG@N/SWTCHS/SWTCH(50), SWMEM (50, 4), MAXSWS,
MAXMEM, NEVENT 375 7DC

SWTCH (50) The magnitude is 1+ the number of times 62 190
SWTCHi has switched., The sign is the
current sign of the input, On the first call
to DERIVS following a switching, all switches
which have changed state have their magni-
tudes increased by 0. 5.

i
1
f

Block Length

CcDC IBM
(Octal) (Hex)

SWMEM(50, 4) The output characteristics of SWMEM 310 640
nonlinearities, SWMi=SWMEM(i, 3)
: -SWMEM(i, 2)*(SWMEM(, 1)-"input"),
> SWMEM(i, 4) is a flag indicating the
1 state and a change of state in SWMEMIi,

MAXSWS The maximum i for which SWCHi is 1 4
serviced

MAXMEM The maximum i for which SWMi is 1 4
serviced

NEVENT The number of EVENTSs to be serviced, 1 4

set by the user on the *NEVENT card.

COMMON/UNIPL/VPLOT(100), NOPLOT, NPQINT, NLOCAL,
MAX 150 330

- VPL®@T (100) Temporary storage for the current 144 320
. (100) PLQT variables

NOPLQT A flag to prevent saving of any PLQT 1 4
variables, If NGQPL®T#0, no PLOT
variables are saved and QUTPUT is only
called at print times, (N@QPLQ@T=0
\ nominally)

NPQINT During run time, the actual number of 1 4
points saved on TAPE1 for plotting.
At end of run, the actv~l number of
points to be plotted,

o et OO, ¢

NLQCAL During run time, the number of points in 1 4
the PLQT buffer, (NLQCAL £ 2000 for
CDC, 4000 for IBM.) At conclusion of run,
the number of frames per plot point, Must
not be changed by user.

MAX The number of words per plot frame 1 4
written onto TAPEILl by ESP

0‘.

T

COMMON/UNIP2 /HEAD(60), QUT(60), TITLE(8), T@DAY,

NHEAD, LINES, NPAGE, JLINE, MXL, IFORM(3)

HEAD(60)

@GUT (60)

TITLE(8)

TODAY

NHEAD

LINES

NPAGE

J LINE

MXL

IFGRM(3)

Vector which contains print headings
normally picked up from *PRINT state-
ment, but may be set directly by user-
written FORTRAN statements, or on
*HEADINGS card.

Vector containing output values to be
printed. Equivalent to PRINT (60) in
@UTPUT.

Vector containing title specified by user
on *TITLE card

Contains actual date returned by sub-
routine DATE and printed on output,

Tke number of print variables (head-
ings)

The number of print lines per block of
print

Page number for printout

Used internally by UNIP2 to control

printed output

Used internally by UNIPZ to control printed
output: number of blocks of printout per

page.

Contains output format to be used for
printed output, based on accuracy require-
ments,

Block Length

CDC
(Octal)

211

74

74

10

IBM
(Hex)

428

1E0

1E0

40

12

ey

C-4. RESERVED SUBROUTINE NAMES

NOTE

The subroutines listed below are loaded and used during execu-
tion of an ESP job. The user should be careful not to duplicate
any of these names when adding his own subroutines, except in
the case of DERIVS, ICCOMP, QUTPUT, SWINPT SWMEMN or

MAIN when he intends to supply the entire routine himself,

ROUTINES USED BY ESP AND GRAPH

ABORT
ADAMS
ADMNTP
AND
BUFF
CKB LNK
COMPL
CONS
DECG@D
DERIVS
EOFS1IM
ENC®D
EQF
ESPCTL
ESPII
ESPRNT
ESPLOT
EVENTS
FILBUF
FILLBUF

FRAMES
FRAMXX
GENGRD
GRAPH
GRAPH2
GRAPHX
ICCOMP
ICKBLNK
IDEC®D
IDFRAM
IPICK
JUNK
LABCHK
L1BRST
L1BSET
L1ERR
LEVEL
LEVELL
LEVEL2
LINGRD

1OGGRD
MAIN
NABLE
NEXTCHR
NEWGRD
NQTIFY
NUMBER
NUPLQT
NXTCHR
OR
GUTPUT
PACKER
PARRAY
PINQUT
PLOTS
PLTSYM
READIT
REMARK
RESTOR
SCALEP

SCALEPR
SECNZR
SHIFT
SKIPFIL
SKPFIL
STDGRD
SWINIT
SWINPT
SWMEMN
SWTCHE
SYMBQ@L
SYSTEM=
TIM2GQ®
TIMEIN
TIME®U
TIMEQUT

ROUTINES USED BY WHE LP

CRQ®SS MATINV MATZRQ SCAMAT
IDENT MATMAT MOVE TRNSML
MATADD MATSUB NEGATE TRNSPS

COMMON BLOCK NAMES (may not be used as subroutine names on IBM)

BASIC HMAXMN READIN SWHPAR

B LANK LIBSCR RKCONT SWTCHS

CONSTS MISCEL STFPAR TEMSTR

EQFSIM NDISPR STPCON UNIPI

GRAPHP PARS SWDBUG UNIP2
!
!
A

C-12

R T~ aerere g e

ST

P

%

APPENDIX D
PROGRAM CONTROL AND EXECUTION
D-1, Introduction & v ¢ ¢ ¢« t v 4 e e e e e ..
D-2, ESP Control Cards and What They Do ,
D-3, PRECOMP . . . i v i v vt e e v e e e e e a . .
D-4, Run-Time Routines ¢« . ¢ ¢ ¢ ¢ v ¢ v « o &
< »

R L e by

i
i
1
s
]
i

APPENDIX D

PROGRAM CONTROL AND EXECUTION

D-1. INTRODUCTION

How an ESP program works can be considered on two levels., First,
there is the manner in which the control cards put the program together from
the user's deck and the ESP files, Then, there is the manner in which the

program actually executes to solve the user's problem. This appendix will

attempt to clarify both, first by providing a diagram showing the relationship
of control cards, compilers, libraries and files and second by providing
= descriptions and flowcharts of the major subroutiii2s which make up the ESP

] library.

e e e em——

'0".

*ejep jutrad
Burutejuod ‘INdINQ -

*a1y Indur

ue se 21AJVL 3uIsn ‘NIVIN
weadoad sajnoexyg ‘Laeiqrg

‘payoed ‘ejep jord dSH @Y) WOoJIJ SaUIjnoI awij-undg 2194V .L
Suturejuod ‘[TAJV.L - ay3 Juippe ‘weadoxd 3y speo] o1 ‘@D
(Posn JTAHM
wezdoxd s 1950 3) STAAVI (STAdVI=I)NLJ
2yj) Jo uoisaaa Axeulq *apod Axeuiq ajqend 10 (QTIHM 10

a1qejedoldr e ‘PO -

-9xa oju1 a1y Indut ayz sapidwon

ou 31) DYPSNI

(DIPSWI=I)INLJI

NvELYDI ut

‘NVILYQJI ojut afenSuey
dTHHM Ul uajjtam suorjenbas
X1I}BW J03Daa S3je[sUel] pue

wexfoxd s,19sn Juture) speax yoiym weafoxd NyvyILIQI (1euordo)
-uod Y e ‘GTAJV.I —= ® ‘dTAHM weadoxd sajndaxy DY PSNI (DYPSWI)ITIHM
spaed ejep
I3Snh pue spaed ejep
sawny-unx ayj Surure)
-uod 9y ' ‘2THAJV.I -
NIWINMS pue ‘LINIMS *sauynol ajerduwod
‘SATIEQ ‘1NdLNg a)yew 03} papaau se sjusauwiajels Sul
‘dIN@DDI ‘NIVIN -PPE ‘NVILIQJ 03 31 s3jejsuely
‘sautjnox xasn Jurure) pue 9pod §,19sN 23 SPEdI Yo 1yMm
-uod 31y e ‘DYPSNI - ‘dIN@OTUd weidoxd sajndaxy (3uipod s,19s)) "dNQDIYJ
ILNdLno NOILDOV LNdNI 2dD

oo ‘e-z-d

OQ AFHL LVHM ANV SQYVD TOJYILNOD dSH ‘t-a

D-2

*spaed 7O 3s9yj yJo Juiysy 9391dwiod e 10J Z-g UOII09g ‘g x1puaddy sag

“e3ep jurad ue se 214 VI Suisn va._.wﬁwmhwﬂa%m (pasn M.WMM«%
Suiurejuod ¢ ; :
PR LOPSAS = dSH 3Yj) wodjy sauynos swrty 31) STAAVL
*payoed ‘ejep jord -unx ayj Suippe ‘NIVIN weifoad I0 (JTAHM «0L2 03
Sururejuod ‘11IAJ VI - 23ndox? pue 31pa Nuy ‘sridwon oujl I1EAAVL 012z spied
‘NvELIpd
ojul afenduel JTHAHM Ul U33TaIMm
‘NVILY@I ut suoiljenbe x1IjBW 103094 saje[suri} (reuorido)
wexdoad s,19sn Suiute) pue spesa yoiym wexdoad 174 <002 03
-uod Ay e ‘GIAJVI - e ‘dTIHM werdoad ajndaxy 11d3dvV.L 0€T spied
*spaed
®BlEp I9SN puUe SpIed
BjRp 2WIl}-una ayj Jur
-urejuod Iy ' ‘Z1IJV L -
‘NINWIINMS Pue ‘I1INIMS *saurjnor 93a1dwos ayew
‘SAIYIA ‘INd1ING 0} popo9u s® sjuawaje)s Jurl
‘dIN@DDT ‘NIVIN -PPE ‘NVYLYQJ 03 31 sdjejsuel)
‘saurynoa 1asn Juiutey puU® 9pOD S,I13SN 9Yj} SPEII YOI1ym <021 03
-uod 9y e ‘I1HAJYV.L - ‘AN@DOAYd weadoad ajndaxy (8utpoo s,x9s) 010 spied
LNdiNno NOILOV LNOdNI TOr-N4I
WdIl 'q-2-d
. v e
- —-] . e
PR ! s S S k. -. - ¢ R T S - L DR

D-3

D-3. PRECOMP

D-3-a, What PRECQ@MP Does

PRGGRAM PRECQ®MP is a precompiler, written in FOQRTRAN on
CDC and PLI on IBM, which reads the user's ESP language input deck or file
and translates it into executable FORTRAN routines? to be used by the ESP
run-time package. Its chief functions are to "crack" the *control cards
such as *BLOCK, *SWTCH, and *PRINT, and to write the additional cards
needed to complete those subroutines based on user coding, namely MAIN,
DERIVS, ICCOMP, QUTPUT, SWINPT, and SWMEMN (see Appendix D-3-b),

PRECOQMP operates by making repeated calls to SUBRQUTINE
READIT (which reads the user's card images) and by writing these card
images out onto file IMS@ORC until a signal card is detected. It then tests the
signal card to determine its next action, which may be copying more cards,
setting flags, translating the data on the signal card, or writing additional
FOQRTRAN statements onto IMSQRC to complete the subroutines. Since
READIT depends upon blanks, $ terminators, and * to delimit fields of data
and to tell it how to handle data, formats for all ESP cards should be followed

carefully,

Each time PRECQMP is executed, it will do the following ten steps

in order, although substeps may be in any order, as indicated:
1, Call TIMEIN to get precompiler starting time,
2. Process *METHOD card if used.

3. Write PROGRAM MAIN, specifying proper integration
package, or copy user's PROGRAM MAIN, if provided.

4, Copy all user-supplied subroutines and/or functions,

I1f WHE LP statements are used, however, they are copied as is and must be
converted to FOQRTRAN by the WHELP precompiler.

!

PN A

-~

B A o

R

A Rt e 1 RN R S U S RS st S o

5. Write SUBR@QUTINES DERIVS, ICCOMP, and @QUTPUT in
any order as follows:

a, Write SUBRQUTINE ICCOMP using all cards contained
between *ICC@MP and *ENDIC., If no *ICCOMP is
used, write a dummy routine,

b. Write SUBRQUTINE QUTPUT using all cards contained
between *@QUTPUT and *ENDQ@UT. If no *UTPUT
appears, use data on *PRINT card. If neither *QUTPUT
nor *PRINT is used, write a dummy routine.

c. Write SUBRQUTINE DERIVS using all cards contained
between *DERIVS and *ENDDERIVS, Within this
section, do the following in any order:

(1) Copy FORTRAN and WHE LP statements as given.

(2) Translate *BLQ@CK cards into FQRTRAN and
write as part of DERIVS,

(3) Process *SWTCH and *SWMEM cards by writing
SUBRQUTINES SWINPT and SWMEMN containing
the input expressions and by adding code to
DERIVS to define SWTCH and SWMEM output,

6. Write *HEADINGS, *SWTCHES, and *SWMEMCNT cards on
TAPEI1Z,

7. Copy remaining input, such as *IV, *PAR, or *RUN cards
and user data cards, up to EQF, onto TAPEIl2,

8. ENDFILE 12 and REWIND,
9. ENDFILE IMS@RC and REWIND,
10, Call TIMEQUT to compute precompiler time used.

D-3-b. CARDS WRITTEN BY PRECOMP

Below is a listing of the cards written by PREC@OMP which are
added to the various segments of the user's coding to produce complete sub-

routines, If the user chooses to provide any or all of these routines himself,

he should be careful to include all of the cards listed and to insert his own

ST e W e

coding where indicated. Notice that when a particular routine has no function
and is written as a dummy (see SUBRQUTINE ICCOMP in Example Problem,
Section II) not all of the cards below will be listed. Also, if the WHELP
precompiler is used, it writes additional common block statements for its

own needs,

MAIN PROGRAM

PROGRAM MAIN (TAPEILl, TAPEI!2, INPUT=TAPEl2, @QUTPUT)
EXTERNAL DERIVS, METH@D, INTERP
CALL ESPII (DERIVS, METH@D, INTERP)

END
where
Adams RK2 RK4 Predictor/Corrector
METHQD= ADAMS ESPRK?2 ESPRK4 ESPPC
INTERP= ADMNTP INRKPC INRKPC INRKPC

DERIVATIVE SUBROUTINE

SUBRQUTINE DERIVS(T, Y,DY,STQP)
DIMENSI@N Y (100), DY (100), PAR(100)
COMMON/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMM@N/PARS/PAR
coding which defines derivative equations as DY's and the desired
[outputs of any discontinuities used.
RETURN
END

*SWTCH INPUTS SUBROUTINE

SUBROUTINE SWINPT (VALUES, T, Y)
DIMENSI®N VALUES(1), Y(1), PAR(100)
COMMON/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PAR
coding which defines input expressions to SWTCHs and stores them
[’m array VALUES,
RETURN

END

B el e s a0 6wl

*SWMEM INPUTS SUBROUTINE

SUBRQUTINE SWMEMN (VALUES, T, Y)
DIMENSI®ON VALUES(1), Y(1), PAR(100)
COMMO@N/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMO®N/PARS/PAR
coding which defines input expressions to SWMEMs and stores them

[in array VALUES,
RETURN
END

OUTPUT SUBROUTINE

SUBRQ@UTINE QUTPUT (T,Y,DY, PLOT, PRINT,STOP)
DIMENSI®N Y(100), PAR(100), PLAT(10), PRINT(60), DY (100)
COMMON/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PAR
coding which defines print and plot values and stores them in

[PRINT and PLQT, respectively,
RETURN
END

INITIAL COMPUTATIONS SUBROUTINE

SUBRQUTINE ICC@MP(T, Y)
DIMENSI®ON Y (100), PAR(100)
COMMON/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PAR
coding which defines any initial conditions, computes program

[constants, or performs any task involved with program initialization.
RETURN
END

D-4, RUN-TIME ROUTINES

Once PRECOMP is finished, IMSQRC will contain PRGGRAM MAIN,
SUBRQUTINES ICCOMP, QUTPUT, DERIVS, SWINPT, S'WMEMN, EVENTS
and NQTIFY, and any other subroutines provided by the user to his program,
In order to complete the program and make it executable, a group of sub-
routines to be referred to as "run-time" routines will be selected from the
ESP library and added to the program. The internal workings of most of these

routines probably are not relevant to the user, but a brief description of each

follows,

To aid the user in understanding ESP and perhaps in debugging his

program, some further information is included. Appendix D-4-b shows the
overall relationship of subroutines during execution. Further, Appendices
D-4-¢c, i-vi, contain schematic flowcharts of those run-time routines most
significant in program control and logic, namely, SUBRQUTINES ESPII and
ESPCTL, and the integration routines ADAMS, ESPRK4$ (ESPRK2), and
ESPPC,

D-4-a. Routines Provided by ESP (Run-Time Routines)

ESPIIL Controls overall execution by such operations as reading and
interpreting run-time cards, controlling multiple cases, and
calling plot routines (see flowchart, Appendix D-4-c-ii),

T T TR T

} ESPCT L Controls all of the tasks needed to execute one *RUN card,
which includes initializing and printing variables, calling the
o integrator routine selected, printing warnings if integration

, was unsuccessful, checking for switches and calling the appro-
F priate switch routines, and storing print and plot data at the

b correct times (see flowchart, Appendix D-4-c-1ii).
ODESQL The integration routine, which will be one of the following:
ESPPC Predictor-corrector method
ESPRK2Z Second order Runge-Kutta
ESPRK4 Fourth order Runge-Kutta
ADAMS Adams integration

(See Chapter IV, Integration Package, and Appendices
D-4-¢,iv, v, vi.)

INTERP The interpolation routine used to interpolate data for printout
: and switchings, which will be one of the following:
INRKPC Used for predictor-corrector, RK2 or RK4

ADMNTP Used for Adams integration

\ ESPRNT Calls QUTPUT to obtain print data and does actual printing
T of output.
‘ ESPLOT Calls QUTPUT to obtain plot data and stores plot data for

later plotting.

ke In P 4 S e R R i A T e N e TR SRR 38 2]

SWINIT Initializes switches and reinitializes them after a switching.

SWTCHE Evaluates SWTCH, SWMEM, and EVENTS inputs by calling
SWINPT, SWMEMN, and EVENTS, detects sign or state
changes, locates zero crossings, and flags outputs.

’ SECNZR Finds the zero crossing when SWTCHS, SWMEMs, or
. EVENTS have been detected.
DATE Returns date on which run is executed,
READIT Reads data from specified input stream, terminating on the

character indicated (blank or $).

TIMEIN Records solution starting time.

TIMPUT Records solution stop time,

GRAPH Does actual plotting.

REST@R Used to manipulate plot buffers,

FILBUF

PACKER Used internally for file reading and manipulation.
SKPFIL

DIFTAB Called by ESPPC to see if stepsize doubling will introduce

numerical instability.

-
)

D-4-b, Relationship of Routines During Execution

SWINIT

SWINPT

SWMEMN

DATE EVENTS

READIT

GG aarso)—]
) GG
) LeGoon) |G-

DERIVS

000

SWINPT

SWMEMN

B

INTERP

EVENTS

SWMEMN

006000

SWINPT

i

NOTES:

L - routine is part of ESP .

NAME - routine contains user code

2. Many routines are called more than once by their
calling routine but are shown only once

3. ODESOL- and INTERP: are internal variables representing the following
subroutine names, depending on the integration method selected:

- Method ODESOL INTERP

o’ Predictor ! Corrector ESPPC INRKPC
RK2 ESPRK2 INRKPC
RK4 ESPRK4 INRKPC
ADAMS ADAMS ADMNTP

H D-4-c,

Flowcharts of Significant Routines

D-4-c-i. Explanation of Flowchart Conventions

— @D

v

'
v 1

- Store plot data

Call the subroutine whose
FORTRAN name is QUTPUT

Call subroutine UNIP1, which performs
the function described in the box beneath
it. The two way arrow indicates that
program control returns to the main line
at completion of the subroutine

Compute H

Compute H only if H < O; then
continue on "NO" path

=
8 |

. H=05+H

YES
NO
p.3

p.4

FIRSTP

Enter at this point after a branch
from another location

Branch from this point to the
corresponding entry

Multipage flowcharts continue from the
dangling arrow in the lower left corner
of a page to the entry arrow at the
upper left of the next page

Names appearing in all capital letters
represent actual FORTRAN names

Al Yp e L e 4 o e £m

o S e i gy A4 5

D-4-c-ii. Flowchart of Subroutine ESPII
{page 1 of 1)

MAIN o—»&PII

DATE
Return today's date

Set flags, counters, switch variables, EPS,Q, and CONSTS
to default values. Zero out PAR, YO and TITLE

READIT

I
) Read next * card on TAPE12 |

RETURN

Read and process information
{ on TAPE 12 up to next = card EOF (12
or EOF. Do one plot

NO

version, solution start and EXIT
stop times, etc

‘ TIMEIN
Read and process data from any

other = card up to next = or EOF REWIND 11
i |

?
YES
TIMEOUT
Begin printed output: date of '

IEition 11 at end of previous data if » RUNC is useﬂ

ESPCTL

i

LWrite remaining plot array contents onto TAPE ﬂ

4
l Endfile 11 l
‘ TIMEOUT

End printed output: max and min step used,
no. of integration steps, no. of pts to be plotted,
and no, of pts on TAPE 11

- R U 1T

e S (R

D-4-c-iii. Flowchart of Subroutine ESPCT L
(page 1 of 3)

< ESPCTL ’
IcCOmP

Y

Initialize Q:
QI = MAX @ (1), | Y (h])

v
Print SWMEM constants, EPS, Q,
HSWM, HSWE, nonzero (Vs and PARs

L
A
——o@sspxm |

A

Zero out inputs and outputs of all
switches and the plot buffer

Initialize T, TP, Y, Stepsize
and stepsize limits

H = HMAX = HMIN
= FIXSTP

SWTCHs
or SWMEMs
used

SWITCHs,

SWMEMs or

EVENTS
used

(Top of loop if)
switches are used

1
A

Set proper signs, values and
flags on SWTCHs and SWMEMs

4‘ EVENTS ’

]
[_Evaluate EVENT inputs |

Strip 0.5s from SWTCH(l)s
and SWMEM (I, ds, if any exist

PR N K4

D-4-c-iii. Flowchart of Subroutine ESPCTL
(page 2 of 3)

|

STOP = 0
JSTART = 0
FIRSTP = 1.0

< 4“ DERIVS)

)
| L
. Compute derivs at T0 or

FIRSTP - 0.0 switch time without 0.5s

A

Set Y (1,2) = DY (D), | = 1, NEQ

Compute H

ESPLOT ouTPUT

Store plot data at
TO or at switch time

ESPRNT QuTPUT

Print at TO or
at switch time

(Top of loop if no
switches are used)

RETURN

(Integration
routine)

DERIVS

Attempt to integrate

- Vo B e et L il

D-4-c-iii, Flowchart of Subroutine ESPCTL

(page 3 of 3)

Print error message:
KiLAlG YES "Requested accuracy not achieved at T -
2 Remainder of solution is suspect.”
NO

Successful step taken:
NUMSTP = NUMSTP + 1

Are

any switches
used
?

-

Evaluate switch inputs, detect and locate sign changes,
flag outputs, Print at all print times up to switch time.

Have

any switches

switched
?

YES

[Evaluate derivs with 0.5s on switch outpuq

ESPLOY ouTPUT

Store plot data at
new integration step

Print at all remaining Read next data
print times up to TF on = RUN card

Compute next print time:
TP = TP + HP

‘

Interpolate Ys and
DYs for printing

fo—s((_tsprnt Yoo output)
1

Print & normat
print time

D-15

Error message
and RETURN

D-4-c-iv,

Flowchart of Subroutine ADAMS

(page 1 of 2)

START - _FALSE.

CRASH = 1

too small
for machine
?

TART - | TRUE.

H = HOLD

KOLD ~ JSTART
CRASH = KFLAG

Compute acceptable H |

Print warning message
CRASH = 0

]

Error

small for
machine

Compute acceptable EPS |

?

Print warning message
CRASH = 0

CRASH = 1

START YES
= . TRUE.
?

NO

IFAIL = 0
100

H# YES
HOLD

NS YES
<KOLD

NO
NSP1 = NS + 1

Initialize variables
Compute H for first step
HOLD « 0

K=1

KOLD = 0

START = _FALSE.

NS =0

NS * NS +1

D-16

D-4-c-iv. Flowchart of Subroutine ADAMS

(page 2 of 2)

P YES Compute those coefficients of formulas which
are changed when stepsize H is changed

Predict a solution

, XOLD = 7
T=T+H

z - " —»(DERIVS
.]

i
4 Estimate errors at -

' atives at T
orders K, K-1,K-2 Evaluate derivativ

KNEW = K using predicted solution.

Successful step:

YES KOLD * K

1 HOLD = H

Correct predicted solution

Error
acceptable
?

Unsuccessful step: - -
Restore T and refated variables Evaluate derlvs. using
IFAIL = IFAIL + 1 corrected solution

Tt IR,

Update differences for next step.

NEG Determine best order and step size
Compute new H for next step

3 K = KNEW

Compute
optimum H

YES

()

0".

NO

CRASH = 0
EPS = EPS + EPS
RETURN

k
)
D-4-c-v. Flowchart of Subroutine ESPRK4 (ESPRK2)
(page 1 of 2)
k- Set method flag:
: MF = 'l
: | OK to double step:
H=20+H
. Fixed step used: H = MIN (H, HMAX)
HO2 = 0.5 = H HO2 = 0.5 = H
KFLAG = 1 H2 = 20=H
NODUBL = 0
Take double step DERIVS
|
3 calls to DERIVS for RK4
! 1 call to DERIVS for RK2
Take first of two
single steps DE}:‘VS
\ 4 =
TSAVE = T 3 calls for RK4
. T=T+H 1 call for RK2
2 |
. i
| FIXSTP |
A YES ;
? >0 FIRSTP = 1.0 E
?
i
* NO DERIVS

. r

! | FIRSTP = 0 I
Take second of two
single steps ‘ DERIVS

Ry]
1]
1
4 calls for RK4
2 calls for RK2

|
b
E‘
r
A
-
L4
]

Py

D-4-c-v.

Flowchart of Subroutine ESPRK4 (ESPRK2)

(page 2 of 2)

ERRSQS = 0

compute ERRSOi]

KFLAG = -1
NODUBL = 1
) HO?
<+ <HMIN
?
v '
[prepare for next CALL NO
l OK to halve interval;
T=T+H

Do it and try again.
FIRSTP = 1.0 T = TSAVE i

J @

I FIRSTP = 0 I

Move Ys and DYs

for next call
ERRSQS
>0.5% D=l NODUBL - 1
2
PS
? (1% for RK2)

[NumsTP = NumsTP + 1 |

A

. RETURN l

‘,'; D-4-c-vi, Flowchart of Subroutine ESPPC
(page 1 of 3)

- >< ESPRK4)

]
1
;‘ | Take 2 steps using Rﬁl

, JSTART =1

Take 1 unchecked
7| step with RK4

T

o NUMSTP = NUMSTP + 1
LCOUNT = -3

KCOUNT = 0

SN DOUBLE = .FALSE.

g S '
o)4
Dou:hvﬁs

S . TRUE,

DOUBLE = .FALSE.

¢

Do double interval
PIC integration

4

Do single interval

PIC integration
DERIVS
[}
»(_ DERIVS) [Compute Derivs at T + 2 H]

i v
Compute Derivs

[

NODUBL = 1

at+H YES (Stay with single intervall
LCOUNT = -4
Double the interval
LCOUNT = -2
KCOUNT = 0

&)

g < et W___.'. —_

Flowchart of Subroutine ESPPC

{page 2 of 3)

-c-vi,

D-4

SALIAp 38N (BA3RY

SAIY3I0

i

exny - sbuny upm
uonesbajur eysay

[wessa: o saa

pue s dn jos |

ajejodadu|

%N

uonesbaiu) Id |eAsdul
3lbuss o uzmay

il

(11D - (11 d buiney o)

3IUBIJPP 193410)

syuiod jiey 1@
sauap andwo)

£- - INNODY

5da)s Ny Snoiaasd
21210013)u1 0} SAQ pue SA AN jag

SAI¥3Q

1eAl3ju) aneH

N3N

_cc::_s esay _ 1« LWVIST

[AEERS] |

I.p..—wmox_

‘S

A pue ,GNNOE HOYY3

IH1 0333X3 5,4 INIMOTIOS THL, pue |
LOYVISIE ONI3E S4 GNY INOILIANOD
ST S¥v3ddy NOILMIOS, fulid

SIA

H + L e saiag aynduoday
2 2 |

T+ INROJY - INRODN

(*PaAIRY 3Q R |euldul
wng °ebuey oo} 10113)

taAley 0} jjews oo
H ing ‘sbie| 00} sas13

1- = 9N
1 = 189NQ0N

1 + INRODY ~ INNODY

(‘3ARY O} |fews og)
H 10 ajqeydedde iodi3)

ON

i
Ql >
INNODY

1- INRODX - INAODN
(punoq 1addn anoqe J04J3)

S3A

SIA

ON

A
NIWH
L2<
H

ON|
é
03
NIWH

1 - 19NQON
N
e

QNNO8
SIAN_ 1511

ON

¢
GNNog ©
SIA %1z
153L

(1 0 » $d3 » ANNOE
(1)) JOuEN S8V - ISU

=——==—"

R |

[0 - nandon]

D-4-c-vi,

Flowchart of Subroutine ESPPC

(page 3 of 3)

YES

NO
JSTART = 2

NODUBL
+ 0or
LCOUNT

<0

YES

YES

DOUBLE = . TRUE.

)
RETURN

Set method flag:
MF = -2

RETURN

RETURN

Test to see if stepsize doubling
will cause instability.

RETURN

ATVTPENDIX E

INTEGRATOR EQUATIONS

Wl Acdams Intearation. . . 0 L 0 b L e 0 e e e e e s e e e e E-1
F-2. Se~snd-~-Order Runge-Kutta -1
IR r'eurth-Order Runge-Kutta ., . ., oo . o .. E-¢

F-4, Hamiming Predictor Corrector « . « v « v o . . E-3

SNOILYND3 HOLVHOILNI

‘3 XION3IddV

R Wil =3 e 18 S P R ¢ Do MY |y e

APPENDIX E

INTEGRATOR EQUATIONS

In all descriptions given below, assume a differential equation of the

form

dy _
3L =t y)

with y a vector, For ease of notation, Y, = y(tn).

E-1, ADAMS INTEGRATION

Adams integration is a highly complex variable-order, variable-step
algorithm, which is completely documented in Ref, 6, As its complexity
precludes condensation, the user is referred to Section IV-B and Appendix

D-4-c-iv for an overview of the method and to Ref. 6 for the actual algorithm.

E-2, SECOND-ORDER RUNGE-KUTTA

Vo4 = Yy +0.5h(kg +k)) (E-1)

=
[}

0 f(tn’ Yn)

=
1)

f(¢_ +h,y_ +hky)

In the RK2 fixed-step mode, Eq. (E-1) is used to take two steps at a
time before checking for such items as print, plot, and switchings. In the
RK?2 variable-step mode, a step of size 2h is taken first and compared with
the result of two normal steps, If V42 18 the result of the 2h step and Yo42

is the result of 2 normal steps, the estimated error vector is

err = (y .o - Vp42)/3:0

e 5 0 bbbt o et i S

TP

-
.
>

which is added to y to improve the accuracy. This error vector is used

n+2
to control stepsize based on the test outlined in Section IV-C, namely, let

bnd = eps X max (yn+2,q)

then

1, If err >bnd in any component, halve the stepsize (if allowed)
and retry,

If err < bnd/30.0 in every component, set h = min(stepmax, 2h)
for the next step.

(8]
.

E-3, FOURTH-ORDER RUNGE-KUTTA

=y, +h(k0 + Zkl + 2k, + k3)/6.0 (E-2)

Yh+l 2

where

=
n

0 f(tn’ Yn)

o~
]

£t +0.5h, y_+0.5hkg)

P
L[]

f(t +0.5h, y_+0.5hk,)

~
n

fit_+h, y_ +hk,)

In the RK4 fixed-step mode, Eq. (E-2) is used to take two steps at a time

before checking for such items as print, plot, and switchings. In the RK4
variable-step mode, a step of size 2h is taken first and compared with the
result of two normal steps., If V42 18 the result of the 2h step and Vo42 18

the result of the two normal steps, the estimated error vector is

err = (y4p - Vpyp)/15.0

which is added to Yo42 to improve the accuracy. This error vector is used

to control stepsize based on the test outlined in Section IV-C, namely, let

bnd = eps X max(yn+2. q)

e e v

e L T b o o

then

1, If err > bnd in any component, halve the stepsize (if allowed)
and retry.

2. If err < bnd/150,0 in every component set h = min (stepmax, 2h)
for the next step.

E-4. HAMMING PREDICTOR CORRECTOR

Once four back values have been created using Eq., (E-2), the following

formulae are used at each step (primes indicate derivatives).

- 1] 1
Pht1 7 Yn-3 + 4h(2yn “ Yn-l * Zyn-Z)/3

m =p y/121

n+l - 2(p, -

n+l cn

- 1] 1
Cn+l [9yn “Yp2 ¥ 3h(mn+1 + 2Yn - Yn—l)]/8

Yo+l = Sper TPy - cpyy)/12]

Stepsize control is based on the vectors err and bnd, where

err = 9(pn+1 - Cn+l)/121

bnd eps max(y

n+2’)

1, If err < bnd/100 in every component, attempt to double the
stepsize.

2, If err > bnd is any component, halve the stepsize if allowed.

If interval halving is required, the required back values for y are created by
interpolation and the derivative values by calling the derivative routine.

Specifically, the formulae used for the interpolation of back values are
Yno1/2 = [45yn t72y,)ty 5 +h(-9y] +36y! |+ 3yr'1_2)]/128.

Yn.3/z = [y, + 72y | +45y , - h@3y, + 36y’ | - 9y! ,)]/128.

e e e

;
|
,'
!

The difference P, ", from the previous step is divided by 32 to account for
halving, multiplied by 32 to account for doubling, and set to zero following
an RK4 restart,

Stepsize doubling is only attempted if err < bnd/100 and the number of

. successful predictor-corrector steps has been at least

] 1. 3 after a RK4 restart or halving

2. 2 after a successful doubling
3. 4 after a doubling failure
;_
-
|
|
1
\
.
'f
E-4

e S Rt B fuhih s VY vt o T asnd

. APPENDIX F
, SPECIAL CASES: MULTIPLE RUNS AND LARGE SIMULATIONS ‘
- 9 .
-
f F-1, Multiple Runs ¢ ¢ v v o 0 o v 6 e o v o 0 o o o o o @ F-1
z F-2. Using ESP for Large Simulations. . . « . . o« « F-4
!
R |
i b
.

SNOLLYTNWIS 39HVYT ANV
SNNY IdILINN :SISVD

5 o

e oo p b o

- A

0‘.

Sy et R

APPENDIX F

SPECIAL CASES: MULTIPLE RUNS AND LLARGE SIMULATIONS

F-1. MULTIPLE RUNS

F-1-a, Multiple Runs Varying Run-Time Data Cards

If a series of job runs is to be made in which the only changes from

one run to the next are in items which can be input on run-time data cards,

then any number of runs can be made as one job,

The necessary run-time

cards are simply stacked in sequence, according to the following rules:

® Vs, PARs, SWMEMDATA, Qs, EPS, and all other run
time data cards except SWMEMSET retain their values
until they are reset by the user's program or on a new
run-time card such as *IV or *PAR.

® SWMEMSET, if used, must be redefined for each run
since it is changed during execution.

® Each *RUN card produces reexecution of the program as
soon as it is encountered, so must always be the last run-

time card of a case,

® A set of *GRAPH cards must follow each *RUN from which

plots are expected.

EXAMPLE:

*ENDIC

*IV. 0.5 ¥3=0.01 $
*PAR 5.0 3,14 57.6
*SWMEMDATA

1 1,0 2,0 0,7 0,7 1,0 $

*SWMEMSET 1 $
*EPS ALL=1,0E-10 $
*RUN 3 0, 1,0 100,
*GRAPH 1 3

*PAR 10,0 P4=20.0 $
*SWMEMSET 1 $
*RUN 3 0.0 1.0 1
*Iv. 0,1 0.1 0,1 %
*SWMEMSET 1 $
*RUN 3 0, 1.0 100,
*GRAPH 2 3

00.

10.0 $

$

$

$

First run, with plots.

Second run: reset SWMEM in
saturation; change PARs, all
others the same; no plots,

Third run: reset SWMEM in
saturation, change IVs, use
PARs from second run, all
others from first, make plots,

T B o ot i b e

F-1-b, Multiple Runs with the Same Run-Time Data Cards

|
Sometimes the only changes from run to run are in the data read "
from the user's file (see case below) and the user has a rather lengthy list of ;

run-time cards (for example, lengthy *GRAPH cards) which he prefers not to
duplicate for each of the stacked cases, This can be avoided in the following

manner:

® Use a *RETURN card as the last run~time card, after *RUN
and all *GRAPH cards, 1

® Have ICCOMP read the data from the user's file and terminate
program execution when all data is exhausted.

® Write the MAIN program, being sure to declare the user's
file on the PROGRAM card, and include logic to backspace
TAPE12 (this is the file on which run-time cards reside
during execution) after each case exactly as many command
cards as are needed for one case and then loop back to the
call to ESP. (If all * command cards are used for each case,
TAPE12 may be rewound instead of backspaced.)

F-l-c. Multiple Runs Varying Data to be Read In by User

If the user has data decks he wishes to read in from ICCOMP and he
wants to stack up a number of cases, he may use the same stacking of run-
time cards as shown in the above example, but must also do several other
things:

® Either stack his data cards for each case immediately
following the *RUN to which they apply (see Section VII-E)
or place all of the data on a separate file before running the

ESP job and declare this file on the PROGRAM MAIN card
by writing his own PROGRAM MAIN.

® Read the data in from ICCOMP by means of READ or
NAME LIST statements, [If he plans to test for the end of
data for a given case by using IF (EQF.,., he must be sure
to write EQFs on his data file when he creates it, by using
the FORTRAN ENDFILE n between data sets.]

F-1-d. Making Plot Overlays of Data from Multiple Runs

Normally the tape containing the plot data is always rewound
whenever a *RUN card occurs, However, by using *RUNC in place of *RUN

for cases after the first, the user may cause subsequent plot information to be

written onto the file following the plot data from the previous case(s). To
retrieve this new information for plotting the user must specify the appropriate

case number in parentheses following the *GRAPH,

F-2

C‘.

L e e e

o e

EXAMPILE:

*MAXPLQTS 25
*RUN 12 0 1 10 %
*PAR P86 = 34.5 $
*RUNC 12 0 1 10 %
*PAR P72 = 12,5 $
*RUNC 12 0 1 10 $
*GRAPH 1 2
PRINTER PLQT @QF DATA FROM FIRST CASE
*GRAPH (2) 1 2
PRINTER PLOT OF DATA FROM SECQND CASE
*GRAPH 1 3 TYPEF
FILMPLQT @OF DATA FRQM CASES 1-3
*GRAPH (2) 1 3 TYPEF QVERLAY
*GRAPH (3) 1 3 TYPEF @GVERLAY

F-l-e. Running the Solution Backward and Forward

Boundary value problems and other problems where it is desired to
have the capability of running the independent variable in either direction
may be handled by having one PAR, say PAR(99), be +1.0 for forward solu-
tion and be -1,0 for backward solution. Thus use

T = PAR(99) * T
Expressions defining the
derivatives in DY

T = PAR(99) * T

DQ® n i=l, neq

n DY() = PAR(99) * DY(i)

in the derivative routine and an arrangement such as the following for the

run time cards:

*PAR P99 =1.0 $.
*RUN 3 2.0 0.1 10.0 $ I forward solution
*PAR P99 = -1, $)
*RUN 3 -10.0 0.1 -2.0 $ I backward solution

It will also be necessary to copy DY into YO0 in ICCOMP by including:

C@MMON /BASIC/TO0, TF, TP, Y0(100), YPRNT (100), DY (100)

b
b
'
2

:,
-
E
b

F-2, USING ESP FOR LARGE SIMULATIONS

F-2-a, Maximum Dimensions

In general, any combination of ESP variables and special facilities
may be used within one program. However, each of the following items is
limited to the total number indicated:

Derivatives: 100, whether defined as DYs or in

*BLOCK form.

Discontinuities: 150 total

50 defined as *SWTCH
50 defined as *SWMEM
50 defined as EVENTS

Print Variables: 60 defined by *PRINT plus
any number of variables that are user-
formatted.

Plot Variables: 100 if using PLQT and *GRAPH or

any number if user writes his own plot
file and uses other means of plotting.

Parameters: 100 stored and passed by PAR array
plus any number sto.ed and passed by

user,

F-2-b. Maintaining Flexibility

Since especially large simulations often require changes and revi-
sions, it is highly desirable to structure them in a manner which makes
additions and deletions as painless as possible. Below is a suggestion for
one method of maintaining flexibility in numbering and referencing the deriva-

tives, which the user may find adaptable to his program.

The basic goal is to start with a structure which eases the problems
associated with the inevitable changes required, The approach suggested
here is to modularize and to use pointers such that the modules have maxi-

mum independence.

: ® Define 2 common block containing two arrays, each having
F-‘ at least as many words as there are modules, e.g.,

COMMON/IPQINT /IPOINT (50), NLGCA L(50)

® Set NLQCAL(L) equal to the number of derivatives defined
in the Ith block,

® Set IPOINT (1) = 0 and define the remainder of the IPOINTs by

IPQINT (I) = IPQINT (I-1) + NLOCAL (I-1)
for I=2, ...
® Within the Ith module (it need not be a separate subroutine)
define the DYs by, say,

LAC = IPGINT (I)
DY (L@C +1) = ...
DY (LQC +2)

With this scheme one need only know the correspondence of physical
variables within a module. Thus, if the angular displacements of body 5 were]
the fourth, fifth, and sixth variables within module 5, they could be used
anywhere else by i

L@C = IPQINT (5)
ADl = Y (LGC + 4)
‘ AD2 = Y (L@C +5)
‘ AD3 = Y (L@C +6)

This approach may also be useful if the number of Y's varies with

v the input such as is encountered in structures programs,

F-2-c. Production Runs with a Compiled Program

P

If produc.ion runs are to be made with an ESP program which
requires considerable time for PRECOMP, WHELP, and/or FTN compilation,

it may be desirable to create a binary version of the program and a separate

TAPE12 file so that runs can be made without recompilation, This may be

done either with cards or files via the following steps:

B b i o e Sl

nent file,):

*SWTCHES n
*SWMEMCNT n

*HEADINGS name,...name__ $
m

*RUN...
*GRAPH...
*RETURN

To make runs:

® Using the usual control cards for an ESP {and WHELP)
program, compile the source program and either punch
out the LGQ file (binary) or catalog it as a permanent file.

® Add to the run-time data cards those cards normally written
by PRECOMP, namely, *SWTCHES, *SWMEMCNT, and
*HEADINGS, so that the run-time data section looks like this
(These cards also may be used as a deck or put on a perma-

[where n is actual number
of *SWTCHs used,]

[where n is actual number
of *SWMEMSs used,]

[where namename

are actual print headin?s
specified in *PRINT state-
ment. If *PRINT is not
used, this card is unneces-
sary.]

(Any optional run-time cards, such as *PAR, *IV, etc.)

[usual format]

[usual format]

® If the compiled program and run-time cards are on files,
simply attach the program file and call it LG@, attach the
TAPEI1?2 file and call it TAPE12, and then execute LGO.

Example:

ATTACH(LIBI1,2NEWRESP)
ATTACH(LIB2,3FTNPLQT LIB)

LIBRARY (IiBl, LIB2)

ATTACH(LGQ, 2BINARYPRG, ID=VAP185)
ATTACH(TAPEIL2,2TAPEI12, ID=VAPI185)
LGO.

® Alternatively, the binary card deck and the run-time cards

may be used in the following setup:

ATTACH(LIBl, 2ZNEWRESP)

E | ATTACH(LIB2,3FTNPLQ@TLIB) 1
E LIBRARY (LIBI1, LIB2)
L COPYS(INPUT, LGQ)
C@PYS(INPUT, TAPEIL2)
{ REWIND(TAPEIL2)

LG@®.
7-8-9

[Binary deck of user's program]
7-8-9

[Run-time cards as shown above]
6-7-8-9

S Y LR .

i
l
!
i
|
|

APPENDIX G

DEBUGGING SUGGESTIONS

Termination During PRECOMP.
Termination near Beginning of Execution
Time Limit During Starting Procedure.
Execution Occurs but Printout Is Zero or Inaccurate . . .
Discontinuities Are Not Working Properly
"I11-Conditioned System" Message

' XIAN3AAAY

o
m
-2}
c
@
@
-
o
[72)
c
[}
4]
m
(%]
=
»

APPENDIX G

DEBUGGING SUGGESTIONS

G-1. TERMINATION DURING PRECQOMP

1 Check control cards.

Check deck structure.

Look for diagnostic message at end of listing.

Check card formats for such items as required blanks and $s,

If Precompiler reads off END-QF-FILE, check for $ terminators,
especially on *PRINT card.

hea oa B L de)

G-2. TERMINATION NEAR BEGINNING OF EXECUTION

Does NEQ on run card agree with highest numbered derivative?
b Is every DY(i) (i £ NEQ) defined, even if just set = 0?
Check derivative equations carefully.

- Check stepsize and any stepsize limits you may be specifying.
[It may be helpful to print out the stepsize (H).)

If system seems to immediately go unstable, check HMIN (see
Appendix G-6),

G-3. TIME LIMIT DURING STARTING PROCEDURE

' § Try running the program using all Runge-Kutta integration.
‘ Reduce the print interval to obtain more printout.
Print the stepsize, H, in order to monitor its behavior,

. Set HMIN > 0., which causes integration to continue by accepting
. Y(i)'s in spite of errors,

Check equations for a very small or 0, value of DY coupled

with a YO which is also very small or 0, In this situation the
error constraints may be unduly difficult to satisfy, and increasing
the corresponding Q(i) may alleviate the problem,

G-4, EXECUTION OCCURS BUT PRINTOUT IS ZERO OR
INACCURATE

0‘|

Check PARs, IVs, and all other inputs as they are printed
initially,

g T e

Are you attempting to pass time-dependent variables as PARs?

Have you defined all output variables in QUTPUT, either by
computing them there or passing them through common blocks?

, Check each subroutine to make sure referenced variables are
F . defined.

G-5. DISCONTINUITIES ARE NOT WORKING PROPERLY

Have you introduced discontinuities only as SWTCHs or SWMEMs
or by using FIRSTP f{lag?

Are switch inputs properly defined? See section on discontinuities
to review restrictions,

Are the allowable timing errors (HSW, HSWM, HSWE) suitable
to your problem?

e

Do you have switches driving switches directly? (Review Section V-E)

G-6. "ILL-CONDITIONED SYSTEM" MESSAGE "

This generally results from one of the following:

Errors in derivative equations
Discontinuities occurring that are not at switch times

Smooth functions which suddenly change quickly with no switches
occurring

Suggestions for resolving this prcblem are as follows:

Check derivative equations for coding errors.

Check allowable errors (EPS and Q) to see if they are realistic
for your problem.

Consider adjusting HMIN (default = 0): An HMIN > 0 will cause
acceptance of Y's in spite of errors whenever H< 2,0 * HMIN,
This has the effect of forcing integration past rough spots--
useful in some cases but causing instability in others.

j "\See Section IV-D-1,

APPENDIX H

WHELP

Introduction: How WHELP Works . . v v v s ¢ ¢ o o o o H-1
Fixed Dimension WHELP et e e s e e e e e H-2
Variable Dimension WHELP ¢ ¢ ¢ ¢ ¢« s« ¢ o« & H-13

0‘.

APPENDIX H

WHE LP

H-1, INTRODUCTION: HOW WHE LP WORKS

WHELP is a higher-level language preprocessor, which translates
normal (mathematical) engineering equations involving scalars, vectors, and
matrices into FORTRAN statements. It consists of two parts: a preprocessor
which converts the WHE LP equations to FORTRAN statements, and a library

of highly efficient subroutines which perform the actual matrix operations.

WHELP offers two big advantages: speed and accuracy., It saves
coding time by permitting matrix equations to be coded much in the same
form as they are written (instead of as a series of subroutine calls); it helps
to reduce programmer errors since the user's code is simpler than other-
wise required and maintains a close resemblance to the equations it repre-
sents; and it facilitates debugging because any equation or coding errors that

do crop up are easier to find,

For example, the equation

A = BT*C + D*E where A,B,C, D, and E are

3 x 3 matrices

which normally the user would have to code as a series of subroutine calls,
can be coded in WHELP with the one card:

A = B,*C + D*E $

WHE LP functions by first setting up a list of those variable
names (scalars, vectors, and matrices) which the user has declared as
WHE LP variables, It then searches the user's coding until it recognizes

one of those variables on the left-hand side of an equal sign. This is inter-

preted as the signal that the right-hand side is a WHELP (vector-matrix)

B T T IR I RTS8 S - e AN g P TRl SR o - hd ~ had ‘“1

expression and must we translated to FORTRAN, WHELP then scans the
expression up to the $, comparing each variable to the list of declared |
WHE LP variables, to ascertain which represent scalars, vectors and
matrices, and to determine their dimensions. Using the proper dimensions
it then interprets the operator symbols (+, *, etc.) to generate calls to the
appropriate subroutines to perform matrix multiplication, addition, trans-
position, etc. The end result of the WHELP processor is an executable
FORTRAN program, in which the user's matrix equations will appear as

- comment cards followed by the subroutine calls needed to implement them.
When this program is then compiled and executed, the needed matrix sub-

routines will be loaded from the WHELP library. The user, therefore, has

two tasks to perform: declaring and dimensioning those variables which will
be WHELP variables and writing his vector-matrix equations in a form that
WHELP can interpret.

Basic WHE LP assumes vectors and matrices of fixed size, but
WHELP may also be used with arrays of variable dimensions. The discus- i
sion below will start with the simplest application, fixed-dimension WHE LP,
and then proceed to a description of variable dimension WHELP and to some

special time-saving features which have been added to WHELP.

H-2. FIXED DIMENSION WHE LP

} A WHELP variable is defined to be any vector or matrix which

:' will be referenced as a vector or matrix in a WHELP expression or any
scalar which is to receive the result of a WHELP computation. Any scalar !
- or single element of an array which will br referenced only on the right-hand ‘

side of a WHELDP expression need not be declared as a WHELP variable. |

There are two types of WHELP statements: declaration state-

ments and WHELP equations, WHELP declaration statements always begin in

column 1 with an asterisk (*) followed by the appropriate name (SAMESIZE,
IDECLARE, or INFQRM: See below) and entries are terminated by a dollar
sign ($) preceded by at least one blank. WHELP equations always begin witha

0‘.

declared WHELP variable starting in column 7 or later followed by an equal

sign and the appropriate expression and are terminated by a dollar sign ($)
preceded by at least one blank, Both may extend through column 72 and be
continued on the next card. No continuation marks of any kind are used.

The statements are assumed to continue until the $ terminator,

H-2-a. Declaring WHE LP Variables

Every scalar, matrix, or vector which is to be used as a WHELP
variable must appear on a declaration card within each (sub) program in which
it will be so used. A declaration card is a card started in column 1 by
*IDECLARE, *SAMESIZE, or *INFQRM and terminated by a $ preceded by at
least one blank. Alternative forms, which are both translated into REAL

statements, are

#*IDECLARE item item... item $

where
name
item = name (n)
name (n, m)
n (and m) are integer constants specifying the number of rows (and
columns) in the array
and
*SAMESIZE n m list §$
where
n (and m) are integer constants specifying the number of rows (and
columns) in all arrays named in the list. The parameter n
must be present, but m may be omitted, in which case all
arrays named are singly subscripted.
list is a list of names, separated by at least one blank, which

are to have the dimension(s) given.

~Ta s B

C e R

EXAMPLES:

*SAMESIZE 3 X Y Z W $
*IDECLARE F(6,3) G(l2,12) D H() $
*SAMESIZE 12 12 A B C E $

These will be translated by WHELP into the FQRTRAN statements:

REAL X(3), Y@3), 2Z(3), W(3)
REAL F(6,3), G(12,12), D, H(6)
REAL A(l12,12), B(12,12), cC(12,12), E(12,12)

Note that all variables will be typed real and that these are the only state-
ments needed to dimension these variables, and in fact the variables must
not be dimensioned elsewhere. Also note that blanks are the only delimiters
between list items: do not insert commas., Extra blanks may be inserted

between items,

Note:
1. A name is a string of 1-7 characters (1-6 characters for IBM)
acceptable to FORTRAN as a variable name.
2. Embedded blanks are not allowed in names, since blanks are

used as delimiters between items, but extra blanks may be
inserted between items to improve readability.

3. TEMS and CONSTS are reserved names,
4, Since both *SAMESIZE and *IDECLARE cards are translated
into REAL statements, they must precede any executable

statements,

5. WHELP variables must be declared in each routine in which they
are to be used as such,

6. Scalar variables may be used anywhere within WHELP expres-
sions, but if they appear on the left-hand side of a WHE LP

expression (for example, as the result of a dot product), they
must be declared as WHE LLP variables,

A third form of declaration statement, *INF@RM, permits

a submatrix to be treated as a WHELP variable. That is, the variable which
will appear in a WHE LP expression may be a subset of a vector or matrix,
instead of the entire vector or matrix, *INF@QRM works much like
*SAMESIZE except no FORTRAN declaration is written out. The character
strings listed on the *INF@RM card are simply added to WHE LP's list of
"recognized" WHELP variable names, and the assumption is made that these
variables are dimensioned elsewhere by *SAMESIZE, *IDECLARE, COMMON,
REAL or DIMENSI®N statements. The format is

*INFORM n m list $

where

3 n (and m) are integer constants specifying the number of rows (and
columns) in all arrays named in the list, The parameter
n must be present, but m may be omitted, in which case
all arrays named are treated as vectors,

list = 1tern1 1tem2 1tem3...1tem

where

name The ls represent a fixed location for the
; item ==jname(J) starting point of the subset, They could
name(l, L) also be any other constant within the maxi-
name (1, 1, K) mum array size constraints, as long as the
‘ subset referenced consists of elements that
are stored contiguously in the full array,

name must be dimensioned elsewhere within the routine and the
subscripts J, L, and K denote which dimension of name
is to be varied in referencing subsets of name.
Note:

1. Item is restricted to 10 characters total.

. 2. Items must be written without blanks since blanks separate items,

3. Only a totally contiguous subset of an array may be declared a
WHELP variable in this manner, (See H-3-a, Data -Storage and

N AR,

4
\

-
- @
L Jd

Transmission.) For example, the columns of a 3 x 3 matrix
BMAT could be declared on an *INFORM card as:

SINFORM 3 1 BMAT(1,J) $
but not the rows:
*INFORM 1 3 BMAT(@J,1) $

because the data in a matrix row is not stored contiguously., In
other words, BMAT (J, 1) is the starting location for an array of
the 3 next elements in storage, and since F@RTRAN always
stores a matrix such as BMAT by columns, a reference to
BMAT(J, 1) where J=2 would give the following:

1 4 7 2
if BMAT =] 2 5 8 then BMAT(J,1) = |3

3 6 9 4

EXAMPLE (in WHELP code):

COMMON/BLOCKI1/B(5, 5)

REAL MM(5, 5,3) A(5,5)
«IDECLARE M(5,5) X(5) $
*INFORM 1 X(J) $
«INFORM 5 M(1,L) $
*INFGRM 5 5 MM(l, 1,K) $
C STORE THE D@T PR@DUCT @F THE JTH C@LUMN IN X(J).

D@ 1 J=1,5

L=J

X(J)=M(l, L) .M(1,L) $
1 CONTINUE

C ADD VECTOR X T® THE LTH COLUMN OF M.
L=2
M(l, L)=X+M(1, L) $

C STORE M/K AS THE KTH SUBMATRIX OF MM.

D@ 2 K=1,3
MM(], 1, K)=M/K §
2 CONTINUE
C USE INFORM T® DECLARE PREVIQUSLY DIMENSIONED
C VARIABLES.
*INFORM 5 5 A B $
B=M+IDENT(A) $

g R g

Note the following points in the example above:

1,

*INFORM 1 X(J) $ tells WHELP to treat the string X(J) as a
WHELP scalar, The ! must appear in the *INF@RM statement,

*INFORM 5 M(l, L) $ tells WHELP to treat the string M(1, L)
as a 5-vector.

*INFORM 5 5 MM(l, 1, K) $ tells WHELP to treat the string
MM(]1, 1, K) as a 5 x 5 matrix, The program is storing 1
5 x 5 matrix in each of the 3 planes of MM,

The maximum dimensions of all *INFORM-declared variables are
given elsewhere by DIMENSIQN, REAL, COMMON, *IDECLARE,
or *SAMESIZE statements,

The *INFORM card places the total character string (for example
MM(], 1, K)) in the table of recognized variables. Thereafter,
the total string should be thought of as a FORTRAN "name";

that is, its spelling is sacrosanct and no changing or substituting
of variables (for example K) is allowed, and it may be referenced
only by the full character string exactly as it appears on the
*INFORM card.

Just as any WHELP scalar which will appear on the left-hand
side of a WHE LP expression must be declared on an *IDECLARE
card, any element of a matrix which is to be used as a scalar on
the left-hand side of a WHE LP expression must be declared on an
*INFORM card with dimension 1, as in the example,

*INFORM 1 X(J) $.

Since *INF@RM does not result in the writing of any dimension
statements (and in fact will appear only as a comment card in
the FORTRAN listing of the program), it may be used anywhere
within a (sub)program as long as it precedes WHE LP statement
references to the variables it declares,

*INFORM may be very conveniently used when it is desired to
declare variables which have already been dimensioned else-
where, (Use of *SAMESIZE or *IDEC LARE in the same situation,
since they result in REAL statements, would produce double
dimensioning, not normally allowed in FORTRAN.)

H-2-b. Writing WHELP Expressions

A WHELP vector-matrix expression always begins with a
declared WHE LP variable and ends with a $, but otherwise may be written in
much the same form that it is written mathematically, simply by using the
symbols given in the table below for the desired matrix operations. For
example, one might wish to evaluate a variable after several ccordinate trans-

formations by
{XNEW} =a[a][B][c] {xOLD}
or estimate a correction term by

fdelx} = [aTA]H AT x)

Using WHELP, these are coded

XNEW ALPHA* A*Bx*C*X@QLD $

DELX INVERSE (A, *A)*A, *R $

and will appear exactly like this on the first listing of the program. On the
FQ@RTRAN file listing of the program produced by WHELP, all WHELP
expressions will be rewritten as comment cards, immediately followed by

! the generated FORTRAN calls (see Calling Sequences, Appendix H-2-b-ii),

Note that in the example above, the vectors XNEW, X@LD, R
and DELX and the matrices A, B, and C must have been previously declared
on a *SAMESIZE, *IDECLARE, or *INF@RM card,

]

*

T e ANt . 10 AT G M B S NI 455 s+ - 3

Note also that any character string appearing in a WHELP expres- i
sion which is not identical to a WHELP declared character string (A LPHA in
the example above) will be treated as a scalar. That is, if XOLD is a declared
WHE LP vector, but the character string X@ LD (I) appears in a WHELP
expression, X@LD (I) is treated as a scalar, In general the acceptable string
length is 1-10 characters if the first character is a letter, but is not limited
for numbers. However, since a longer character string is sometimes
inevitable, for example ZETA (I +1, 2 *7J), WHELP will use the correct
value for ZETA (I + 1, 2 % J) but will substitute a shorter character string

for the too long one when it writes out the FORTRAN file. In any case, the
total character string must not exceed 40 characters, or information will be

lost.

A WHELP equation is evaluated according to the hierarchy of the
operators, given in Table H-2-b-i, In expressions with like operators,
evaluation occurs from left to right, However, as in standard FORTRAN
expressions, parentheses can be used to override the usual sequence of

evaluation. Blanks may be used between items and operator symbols to

1 er A i 1y A Sl A e B APy A5 At e e 8 e g

improve readability and the expression may extend up through column 72 and
continue onto the next card with no continuation marks. The end of the
expression must be indicated by a dollar sign ($) preceded by at least one
blank,

“AVIVOSH(‘XKIdLYW) 10
‘XIZLVWxGVTVDS SB PApod aq 1snw 31 ‘[eda A[[edewWayiew ST Yy TyISx ‘XTHLVIN Ysnoyiry
*a[qrssodwr 10 [eFayr 21' Yo1ym suorjesado jussoidolr sesie pausyde[g

A0
10
(€, v) g v)
pele)
(A1Tuo 1x¢)
A0
(xeredg
/XTITRIA)
A0 MO peLO)
210 po(0)
MO pel®)
S9dTIJeN SI0JD9A

" 'e%%

(uorzerjusuodxgy)

(e

Y0

po(0)

p2(0)

sIe[edg

4 (V)LNIAlI

<+

(VEISTTA NI

1 +

Aydxeraty 1oquiAg

8urpon

Xtyey A3T3USP]

9S5JdaAU] XTJIJBN

Ardnmpy
) asodsueuaq,

asodsueay,
31onpoadg ssoln

jonpoxg a.oQ

UOTSTAIL(T
uonyedrdunp
uorjdeaiqng

uonIppyvy
uorgexsdo

s103eaadO JTAHM IO

’|qel ‘1-q-2-H

H-10

A W Py N
s e s, e b S ORI R .t S et

H-2-b-ii. Calling Sequences of WHE LP Matrix Routines

Because it may on occasion be desirable either to call a WHELP

subroutine directly or to know its calling sequence for debugging purposes,

below is a list of the WHELP operators in use and the subroutine calls which

will result,

Operation
C=A+B

C=A-B

c=aTxp

C=Scalar*B

C=B/Scalar

c=AT

B=0,

C=A.B

C=AxB
B=A

B=-A

A=INVERSE(A)

A=IDENT (A)

Subroutine Call

CALL MATADD(A, NRA, NCA, B, NRB, NCB, C, NRDIMA,
NRDIM B, NRDIMC)

CALL MATSUB(A, NRA, NCA, B, NRB, NCB, C, NRDIMA,
NRDIMB, NRDIMC)

CALL MATMAT(A,NRA,NCA, B, NRB, NCB, C, NRDIMA,
NRDIMB, NRDIMC)

CALL TRNSML(A, NRA, NCA, B, NRB, NCB, C, NRDIMA,
NRDIMB, NRDIMC)

CALL SCAMAT(SCALAR, B, NRB,NCB, C, NRDIMB,
NRDIMC)

CALL SCAMAT(l.0/SCALAR, B, NRB, NCB, C, NRDIMB,
NRDIMC)

CALL TRNSPS(A, NRA, NCA, C)
CALL MATZR® (B, NRB, NCB, NRDIMB)

CALL TRNSML(A, NRA, NCA, B, NRB, NCB,C, NRDIMA,
NRDIMB, NRDIMC)

CALL CR®SS(A, B, C)
CALL MOVE (A, NRA*NCA, B)
CALL NEGATE (A, NRA*NCA, B)

CALL MATINV(A, NRA, 0,0, DET, NRDIMA)

CALL IDENT(NRA, A)

} where: A, B, and C are WHELP arrays of conformable size for the opera-

tions indicated.

NRA and NRB are the number of rows of A and B being used,

NCA and NCB are the number of columns of A and B being used.

'; NRDIMA, NRDIMB, and NRDIMC are the fixed number of rows for
which A, B, and C are dimensioned.

' DET is the determinant of matrix A,

' H-2-c. Special Features

- ® A=0. $ This zeros out A where A is any WHELP variable. T

® The remainder of a card following a dollar sign may be used
for comment., For example:

A=B +ERR@PR $ ADD ERRQGR VECTQR {

® WHELP variables may be set equal to strings of FORTRAN
expressions, The format is

variable = § elernentl $ element2 $...9% élernentn $$

where

! a constant
or
elementi = any legal FQRTRAN expression
or
*k (where k is an integer constant denoting
' how many times the expression following is
. to be repeated)

P
|

EXAMPLE:

#*IDECLARE M(2,2) $

M=% SIN(T) $ CAS(T) $ *2 $ ALPHA + R $$
produces the result:

M(l, 1) = SIN(T)

M(2, 1) = COS(T)

M(l,2) = ALPHA + R

M(2,2) = ALPHA + R

Note:

1. Element may notbe a WHELP expression.

2. Matrix variables are stored by column and therefore must be
listed by column.

3. Like the FORTRAN DATA statement, no elements may be
skipped and the number of elements must not exceed the total
size of the variable,

4, When used with variable dimension WHELP (see below), data
will be packed into the first N*M elements of an array.

H-3. VARIABLE DIMENSION WHE LP

WHE LP may also be used with matrices having variable dimen-
sions: the WHELP equations are written in exactly the same manner as they
are for fixed dimension WHELP, and special forms of *SAMESIZE, *IDECLARE
and *INFGRM are used to declare the variable size matrices. These special
forms will be explained below, but since successful use of variable dimension
WHE LP depends upon an understanding of how WHELP stores and transmits
data for matrices of variable dimensions, this will be discussed first, Itis
strongly urged that the user carefully observe the constraints on data storage
imposed and implied for variable dimension WHELP and also that thorough

printout and testing be done during program development,

H-13

V>4 byl -0 T e S RN i 5 e A Al oo i B

s

H-3-a. Data Storage and Transmission
We are accustomed to thinking of matrices in FQRTRAN as having
several dimensions, but FORTRAN does not actually store a matrix in a two-
dimensional "slot": It stores it, column by column, in a continuous string.
. Thus a simple two-dimensional matrix MAT (3, 3), which we represent
mathematically as
4,
- 2, .
3.6 9. :
is in fact stored like this:
MAT(l) = 1,
MAT(2) = 2,
MAT (3) = 3.
MAT (4) = 4,
MAT (5) = 5,
MAT(6) = 6.
MAT(7) = 7. ‘
:
: MAT (8) = 8, :
‘. MAT(9) = 9.
I
As long as full matrices are used with WHELP (or FORTRAN), the only
commonly encountered implication of this is in the use of data statements to T
' set matrix elements, where one must remember to list data by columns rather]
than by rows,]
Furthermore, when we wish to deal with some variable size subset of a
- matrix, for example, if we want to use the above MAT(3, 3) as MAT (N, M) ‘
J where N = 2 and M = 2, then we are accustomed to thinking of our data storage
like this;
!
H-14
1 \\
{

|
MAT (N, M) 1, 4, | 7. or MAT(N,M) = MAT(1,1) = 1,
I
2. 5. 8. MAT(2,1) = 2,
I LA 2, 1)
3. 6. 9, MAT(],2) = 4,
MAT (3, 3) MAT(2,2) = 5,

where MAT (N, M) occupies the first 2 x 2 positions in MAT (3, 3).

WHE LP, however, assumes that the data in MAT (N, M) is stored
in the first N x M locations of MAT (3, 3) as follows:

MAT(N, M) 1, 4._: 7. or MAT(N,M) = MAT(1) = 1,
2. {_;. 8. MAT(2) = 2.
I
L3, e 9. MAT(3) = 3.
MAT (3, 3) MAT(4) = 4.

In other words, WHELP always assumes that the N x M elements
of a variable dimension matrix are stored "packed", one immediately after
the other, by columns, in the storage space allotted for the full maximum size
of the array. Whether it is operating on a matrix or storing the results of an
operation into a matrix, it will use the first N x M elements, not the first N

rows and M columns.

Therefore, the user must always be certain that arrays to be
operated on are stored "packed" and that if WHELP arrays are to be printed
or otherwise used in FQRTRAN format, they must be "unpacked" by the print
statement or some other means. Two subroutines are included in the WHELP
library to aid the user in changing from FORTRAN matrix format ("unpacked")

to WHE LP matrix format ("packed") and vice versa. They are explained

below in Appendix H-3-c,

|
I
1
|
I
|
i
|
|
i
i
|

H-3-b, Declaring Variable Dimension WHELP Variables

- Special forms of *SAMESIZE, *IDECLARE, and *INFORM
' accomplish the task of activating variable dimension WHELP, The formats ;
are the same as for fixed dimension WHELP except that n and m (row and :

column dimensions) can take either of two forms;

or
integer constant

integer name/integer constant
n(m) =

where
integer name must be 1-3 characters, beginning with a letter

integer constant is the maximum size

s L

EXAMPLES:

*SAMESIZE N/10 M/20 A B §$

*SAMESIZE 20 M/l0 C D E $
*IDECLARE A(N/10,M/20) B(l0,M/20) C(5,5) $
*xIDECLARE Z X(K/30) Y(K/20) §

«INFGRM N/20 M/20 FM(1,1,K) $

*INFORM L/20 PT(1,J) $

The following statements apply to all three declaration forms:

1, F@ORTRAN subroutine calls generated by WHELP will always)
use the letters (if any) and result in variable-dimension '
computations, assuming data to be used is packed and
producing packed results,

2, The numbers given as dimensions determine the maximum
size of the arrays declared.

g 3. WHE LP checks to see that the maximum dimensions of
arrays are conformable for the operations indicated in an
expression, but it does not check the variable dimensions
to ensure they are less than the maximum dimensions nor
does it check to ensure that they result in conformable
matrices,

Beyond this lie some important differences in how the three

statements may be used, due to the following facts:

1. FORTRAN requires that the maximum size of an array
must be stated before any subset of the array may be
referenced.

2. If an array is to have variable dimensions within a sub-

routine, then the integer variable names representing
those dimensions, as well as the array name, must be
part of the argument list of the subroutine.

3. *SAMESIZE, *IDECLARE, and *INFORM are all translated
differently by the WHELP precompiler:

*SAMESIZE N/10 M/20 A B $
produces
REAL A(l0,20), B(10, 20)

whereas

*IDECLARE A(N/10,N/20) B(lo,M/20) $
produces
REAL A(N,M), B(10, M)

and

*INFORM N/20 PS(1,7) $

produces

(no declaration statement)

Based on these differences, some general (though by no means
comprehensive) guidelines for use of *SAMESIZE, *IDECLARE, and
*INFORM may be suggested:

1, *IDEC LARE may not be used in a main program. (Use
*SAMESIZE,)

2. If the array name and its variable dimensions are not among
the subroutines arguments, *IDECLARE may not be used to
declare the array in a subroutine.

3. *SAMESIZE may be used in any routine,

4. If an array has already been dimensioned within a routine by
any means, *INFORM may be used to declare the entire array
or any totally contiguous subset of it as a WHE LP variable.
Remember, though, that the data may have to be packed if it
has been stored in FORTRAN format,

5. Use of *INFORM to declare variable dimensioned subsets of
arrays is extremely error prone due to the contiguity constraint
and shoull be vs5ed only with great care.

6.. Results should be checked carefully, preferably on simple
test data, as many possible errors will not produce any
warnings, just bad results,

EXAMPLE:
PRGGRAM TESTWH(INPUT, QUTPUT, TAPES=INPUT, TAPE6=QUTPUT)

*SAMESIZE N/5 M/5 A B C §$

N =3

M =3

A=0., $ ZERQES QUT FIRST N * M ELEMENTS OF A,

B = IDENT(B) $ CREATES N @RDER IDENT MATRIX, PACKED.
C ST@RE DATA INT® A IN PACKED FORMAT

A=$%3$1, $*%332. $=*38$3, $$

C=A+B $

CALL VARDIM(A, B, C, N, M)

CALL VARDIM2(A, B, C, N, M)

END

PRI - - .

U)

SUBRQUTINE VARDIM(A2, B2, C2, N, M)
*SAMESIZE N/5 M/5 A2 B2 C2 §
C2=A2 +B2 §$
RETURN
END
SUBRQUTINE VARDIM2(A3, B3, C3, N, M)
*IDECLARE A3(N/5,M/5) B3(N/5 M/5) C3(N/5 M/5) $
C3=A3 +B3 $
RETURN
END

In this example C, C2, and C3 will all wind up with the same result,
packed into the first N * M locations. Note that SUBROUTINE VARDIM
uses *SAMESIZE and SUBRQUTINE VARDIM2 uses *IDECLARE, but

results are identical,

H-3-c, Packing and Unpacking Arrays

To aid the user in changing from FORTRAN matrix format
("unpacked") to WHELP matrix format ("packed") and vice versa, two

subroutines are included in the WHELP library, They are called by:

CALL FTOWLP(A, NROWS, NCOLS, NDIMA)
and
CALL WLPTQF (A, NROWS, NC@LS, NDIMA)

where
A is the matrix to be packed (unpacked)
NROWS is the variable row dimension
NC@ LS is the variable column dimension
NDIMA is the maximum number of rows for which A is

dimensioned

H-19

EXAMPLES:

1. *SAMESIZE

N/5

3

C

D

C DEFINE ELEMENTS OF C IN

E

FORTRAN FOQRMAT

Cc(i, 1) =1, $ C(l,2) = 4, $ C(1,3) 7.
C(2,1) =2 $ C(2,2) = 5. $ Cc(2,3) 8.
c3,1) = 3, $ C(3,2) = 6. $ C(3,3) = 9.
C(4,1) = 0. $ C(4,2) = 0, $ C4, 3) 0.
C(5,1) =0 $ C(5,2) = 0, $ C(5, 3) 0.
N=3
C PUT C INTO WHELP FORMAT
CALL FTOWLP(C, N, 3, 5)
C SETE =C(N,3) X AN N X 3 IDENTITY MATRIX
E = C * IDENT (D) $
Notes:
a. In this example the elements of C are all defined in FRTRAN
format, so before C(N, 3) can be used in a WHELP equation,
the data must be packed into the first N x 3 elements of C,
IDENT (D) will be a packed matrix, as will matrix E since they
are the results of WHE LP operations.
b. The packing operation will destroy values previously stored in
N C(4, 1) through C(4, 2). A subsequent unpack would leave
F| 1 changed values in C(4, 1), C(5, 1) and C(4, 2),
i ' 2, SUBRQUTINE XYZ(A,N,M, NDIMA)
: DIMENSION A (NDIMA, 1)
*INFQRM N/20 M/3 A $
K C PUT INT® WHELP FORMAT
5 CALL FTOWLP(A,N,M, NDIMA)
C FORM A * A-TRANSPQ®SE F@GR A BEING NX M
A=A XA, $
- C RETURN RESULT IN FORTRAN FOQRMAT

\ .
e
A\

CALL WLPTQF(A, N, M, NDIMA)
RETURN
END

H-20

]
4
Notes:
In this example matrix A was not a variable dimension WHE LP
array in the calling program, so it comes to the subroutine un-
packed and returns unpacked, but must be packed in order for
the variable dimension WHE LP equation to be executed correctly,
a
.
S
i

pis

H-21

¥ K .-
\(&
.\

A L e U SV e -
" Wimead, > ol

WIS SRV

" A S LB 4.m 695y TN i 600 W
S o e e ———

REFERENCES

Hamming, R.W., "Stable Predictor-Corrector Method for Ordinary
Differential Equations, " JACM, Vol. 6, No, 1, January 1959,

Wilkinson, J.H., "Two Algorithms Based on Successive Linear
Interpolation, " Stanford University Computer Sciences Department,
Report No. TR-CS60, April 1967,

Ralston, A,, "A First Course in Numerical Analysis, McGraw-Hill,
New York, 1965,

"IPD Computation Facility Computing Guide, " Revised Edition, IPD
Systems Programming Department, Engineering Science Operations,
The Aerospace Corporation, El Segundo, California, 1 October 1974
(not available outside The Aerospace Corporation),

Scope 2.1 User's Guide, " Revised Edition, Control Data Cyber 70/
Model 76 Computer System 7600 Computer System, Publication No.
60372600, Control Data Corporation, Arden Hills, Minnesota, March
1978.

L.F. Shampine and M, K. Gordon, "Computer Solution of Ordinary

Differential Equations, " Freeman and Company, San Francisco,
California, 1975,

I-1

N

]
E- -
{
F
3

p
2
"t

INDEX

Page
A
accuracy
of plotteddata ¢ v v v v v h e e e e e e e e e 6-7
of printed values ., et e e e e e e e e e e e e e e e e e 6 4, 6-5
of solution . . . v v« v 4 i e v e e e e e . . 44t047 4-9, 4-10
of switch timing ¢ ¢ ¢ ¢ v v ¢« v v v v 0 0w 5 16 to 5-19
See also *EPS, *Q, *HSW, *HSWE, *HSWM
ADAMS integrations c e e e e e e e B - T -
flowchart & & v v vt e v e e e e e e e e e e e e e e e «...D-16, D-17
equations 0 0 04 e e e 0 e e C e e e e e e e e e e e E-1
AUTG . . v o s e e e e e e e v e e e e e e e e 6-9
B
backward solution e e e e e e e e e e e e e F-3
BASIC (common block) e e e e . e e e e e e e e C-3
BLANK (commonblock)+ C-4
*BLPCK e e e e e s s e e e e e e 3-5to 3-7
second order blocks e e e e e e e e e e e e e e e e e e 3-6
examples. ., e e e e e e e 2-4, 3-7
first order blocks e e . 0. 3-5
examples. e e e e e e . 3-7
boundary value problems . ., e v e e e e e .. F-3
BUFFER . . v v v v ¢ 6 v o 6 o o s o « e e . . . C-6
C
C (see C@NSTS, *SWMEMDATA)
C@LCNT.... . . C-6
comment cards, rules fOruSe « o v v v v v v o o o v o o o o e e . A-l
common blocks s et e e e e e e e e e e e e e CZtoClO
alphabetical list and contents e e e e e e e e ¢« + ¢+ .C-3t0C-10
variables passed through e e e e e e e c-2
See also specific block name,
compiled program, making runs with . . . s e e e e e e e F-5to F ~
CONSTS e e e e e e e e
See also SWMEMDATA
control cards
CDC
formats . . (v 000l v e e e e e e e e e
what theydo

AD~ADB4 676 AEROSPACE CORP EL SEGUNDO CA ENGINEERING GROUP F/6 9/2
THE ECLECTIC SIMULATOR PROGRAM (ESP) USAGE OU!DE-(U)
MAY 80 E R COFFEY» H J WERTZ '0701-79-(:-0080
UNCLASSIFIED TR-0030(9320)-1 SO ~TR-80-21

303
™
man o8

| O il fjs
———

=7
L - e
=

i |3
2 i e

* .
. é
L[]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-1

INDEX

IBM
formats . .
what theydo
CR®SS (subroutine) . . « « .

data files
as output .« s e e

TAPELl
user file.
example
asinput .,00 0 .

DATE (subroutine)
deadband (see *SWMEM)
debugging . .« « « « « ¢t 000 .

deck structure .,
examples . .,00 .
derivatives, defining
alternatives
engineering blocks
examples ,0 . .
generalrules
numberof0 . ..
with WHELP
examples . . . ¢ ¢ ¢ s .
DERIVS (subroutine) .,

example ¢ 00 0 .

format 00 .
printing from
. when written
L *DERIVS . . . v ¢ ¢ o o s o & .
!‘ ' DIFTAB (subroutine) e e e s s e
. dimensions (maximum)
- discontinuities ., .,
accuracy control
f - debugging
| - detecting timing
] printingat
sequence of events
’ several in series .,
P- See also *SWTCH, *SWMEM, *
f

calls to during switch processing

(Continued)

e »
e o
e
. .
L3)
. .
*
. .
LI
. e
o
.
* o
e o
LI}
e o
o o
. o

.
*
. .
* .
o o
v o
o »
. .
. o
LI}
o
. o
. @
e ®
o &

¢« ® w » ®

¢« & 8 8 8 8 & % 3 8 T s ° & 8 w T s % s e » =

e« ® e e ® @ o e & & ° o o @

e o o o o

e o o o

e« o e o o »2 e o o @

6-13 to 6-17
6-13 to 6-16

6-16, 6-17
e e .. 6-17
.. 1-6, 1-7

2
4

6

7

1

7

. , 3-3
) 2
.. 11, 7-2
.. 3.3, 3-4
ce e -4
.. 3-1,3-2
. 5-16, 5-17
. ... 2-8
... D-6
ce .. 6-12
.... D5
e e 3-1
.+... D-9
F-4

9

« ... 5-16
. 5-17, 5-18

5-15 to 5-17
e oo . 5-17

INDEX (Continued)

Page
discontinuous driving function (see *SWTCH)
discreteinputs , . ., e e e s e e e e e s s e e e .. 4-7, 4-8
5 e s 4 e e 3-1to 3-4, C-1, C-4
E
*ENDDERIVS . ., . . . 3-1
*ENDIC (see *ICC¢MP)
*ENDQ@UT (see *@UTPUT)
EPS e e e s e s s e e s e et e e e s e e e s e e e e . C-5
L O S 4-3
example 0 st e e e e s e e e e e e e e e e s e 4-4
ESPCTL(subroutme) e e e s e e e e e e e et e e et e e 4.2, D-8
flowchart , e s o 4 s 8 s s s e s &« « s s s e s e+, D-13 to D-15
ESPII (subroutine) . . . ¢« ¢ ¢ ¢ v v ¢ ¢ s o o o s ¢ s s o 600+ . D-8 D-10
flowehart ., ¢ ¢ ¢« v v o & G e s e et e e e e et e e D-12

ESPI.[DT(subroutme)'...A....................... D-8

ESPPC (subroutine)
equations ., * e v e e e c s s s s e e e s e .. E-3, E-4
flowchart ., , e v s e s s e s s e e e . D-20to D-22
See also integration package, Predictor Corrector,

ESPPLOT (Program) . . « ¢ v o« o o 2 o s ¢ o v s s s s o+ ¢ ¢+ 6-13t06-16

y—r,.. o
.-

See also TAPEl]l, TAPEl2, TAPEI]S, data f1les.
FIRSTP) [[] . L] . L) L] . [] . L] . . 3 . * L] L] . L] .
See also ESPRK4, flowchart,

example e e e e e C e e e e e e e .. 6-15 6-16
, ESPRINT(subroutme)...... R » B -
: ESPRK2 (subroutine)
i flowchart v v v v v v v v v a e e e e e e e D-18, D-19
! equations 4 i bt i s e e e e e s e s s e ... E-1 E-2
! See also mtegratzon package, Runge -Kutta,
. ESPRK4 (subroutine)
flowchart . . . 4 ¢ ¢ s o v ¢ ¢ ¢« s ¢ ¢« s s s s s s s o« » + » » . D-18, D-19
equations , . . D O OB
See also mtegratxon packa.ge Runge- Kutta.
EVENTS (subroutine) . e 4 e 4 st s e s e e e e s e . b5-10, 5-11, 5-16
F
FILBUF (subroutine)+ v s ¢ ¢ o v t s ¢ o oo s ssseeees D-9
files
file usage for ESP without WHELP ., ¢ ¢« « ¢ ¢ o« o o « B-4
file usage for ESP with WHELP c e e e e B-5
C

AN

INDEX (Continued)

FIXSTP e e e et e e e e e e e e .

Page

4.3, 4-6, 4-8, C-7

flowcharts ¢« .o o v o C bt e e s s e e e e e e e D-10 to D-22
ADAMS C e s e e e e e e e s C h e e e e e e e D-16, D-17

flowchart conventions , , . . . ¢« ¢ ¢ ¢ ¢ « «
ESPCTL ..,

c s s s s s e D-11
e+ s . D-13 to D-15

ESPII - L] - . e ®» & e s & a L] . L . . L] *® & ® » e & o s s - L] L] D—l ‘>

ESP package, overview ¢« . ¢ 4 ¢ s

e e ... D-10

ESPPC . . o v v v n .. I D-20 to D-22
ESPRK4 (ESPRKZ) ® e o 8 + & s & s s & e 6 o » s s+ s 2 s e @ . D-18' D-19

formats, card

generalrules .,00 o .
SUMIMATY 4 o 4 ¢ o s o s o o s o o o o s 8 o o o s s o o « v e e A2, A-3

See also specific card names.

FTOQWLP (subroutine) . . + v v ¢ « ¢ « o o o o o o » . ..

GRAPH (subroutine) (see *GRAPH)
*GRAPH 4 e & a2 ¢ . . . - L ® ® 8 2 ¢ & O & ¢ s 2 o s o
examples L . .t e e e e e e e e e e e e

- € |

LI T) H'19 tO H'Zl

e v e e . 6-5t06-11
* s 8 s e @ 2-4, 6'10

useinmultipleruns 00000 0. e o . F-1lto F-3

graphic output (see plotting)
GRIDggg e e e e e e o« vt e e e s o e s e e e

H L L] *« o o e & L] . . L] . . . * & e 2 o - . .
See also stepsize.
Hamming (see integration package, predictor-corrector)

2 3 £ s of 1
*HEADINGS . . v v v e v v v o o o o o s o o e e e e . 6-2, 7-8
HHMAX . . . i i o s o o e e s o s n . . . “ e e s e e s C-4
HHMIN C-4
HMAX o it ot i i e 6 o e e o v s o o s s s oo c e e e e e e e .. 43, C-7
HMAXMN (common block) . & v ¢ o ¢ 2 o o o ¢ ¢ o o o s o o o o s o « - C-4
HMIN & oottt e et e e ot e oo e e e4-3, 4-10, C-7, G-2
2 0 2 T O A o
hprinti o 0 o e e e e e e e e e e e e v e e T-1,7-2

See also HP,
HSW.,......
i 5

examples 0 e e e e e e e e e e e e

J-4

® & ® ¢ 8 e e & o 5 4 s &8 e & 8 s ® 9 " s

* & o o & o o 6’8

K
[\X)
o
o]
>
[}
o~
(@
]
~

(8]
[}
fo—
o
W
]
1
oo n

e mtin s ki ot M ALATAG - e e i kil

. INDEX (Continued)

Page

HSWE e b h e s e s s s e e e e s e s es e e o & o o s s s s 4 s v e s » C-5
*HSWE C e e e e s s s e e s e s e o« o s e s e 5-16, 5-18
examples - T &)
HSWM . . . i ¢ v v v o s o e o e o o e C-5
FHSWM & i v ¢ 6 o 6 a0 o s o o e s s s s e e s e e s e e e s . . 5-16, 5-18
examples e e e o s e e e e s s 5-19
hysteresis (see *SWMEM)

ICCOMP (subroutine) . « « v« ¢« v ¢« ¢ ¢ ¢ ¢ s ¢ o « & &

example of AUMMY . &+ ¢ 4 v ¢ ¢« ¢t 4 s s 4 e e b s e s e e e e e .. 2-12
format ., ¢ 00 s e s 0 e .« o e s e e e e e e e e D-7
printing from. N 6-11
when written ¢ ¢ e e v 0 v o o e« eee. D-5

FICCOMP & v v v 4 v o o o o o o o 6 6 0 s o o o s e o o s o o oa « . 1-5,
example
: *IDECLARE

fixed dimension ., . .

IMS(DRC(flle).................... D-2, D-4
independent variable (see T)
*INFORM

example ., e . o . -

variable dimension. . . . « + ¢« ¢ ¢ b o 4 0 s e e oo . H-16 to H-1

examples ¢ 000 e . &t e s e« e ... H-16, H-19

_ IDENT (subroutine) . . . ¢« « « ¢+ ¢ « ¢ o o o « e e e e e e e « s o« H-11

: IEVENT . ¢« v ¢ ¢ o ¢ o o ¢ o . « e e s e e e s e e s e s e s o o 5-11, C-1

| IFBRM v v v v v v o e o o oo ot oo oo S o X

o Ill-conditioned system . . . ¢« . &+ ¢ ¢ &+ s ¢ v ¢ s s s o0 o+ 4-9, 4-10, G-2

| FIMAX 2 v v oo oo n o oo e soe e T e v
£
|

. fixed dimension ,0 00000 e 0. e+« oo H-5t0H-T
= examples Lttt e e e e e e e e e e e «.... H-6
variable dimension ¢ ¢ ¢ 4 ¢ ¢ t s s e s s o e s s . H-16 to H-19

! examples * & o o s o o 0 ll.o.‘.o...'H-16’ H'zo

initial conditions (see *IV, *ICCQMP)

INPuts & & v v b b e e e e e e e e e e e e .« e s o s s s e 7-1to 7-9

initial conditions7-2,73 7-5, 7-6

- miscellaneous . . . v . . v 4 4t 0t e b e e s e s e e s e e s e e e e -7
B runtimes i ittt e e e e e e e s e e e e 1-1, 72
4 to control acCuracy. « . ¢ v o ¢ 4 e v s e st e e s e s e s e e e e s 7-7
USEr CArdS . 4 4 ¢ ¢ o o ¢ o ¢ ¢ s o s s s s o s s e s o s s 0. 1-6, F-2

user files . . . i it i e e b bt e e st e ettt e e e e . T1-6, F-2

. d USEr PATAMELErS . &+ & 4 4 ¢ o 4 o 6 2 o s s e 0 s o b e v e e WP s 7-3

t
., !
3 INDEX (Continued)
A
F o Page 1
integration package c e s g v e e e . 4-1t0o4-10, E-1to E-4
Adams integration ¢ 4-4, 4-5 E-1, D-16, D-17
alternatives ¢ ¢ v e 0 e . et s e s s e s s s e e s e e 4-1
errorcontrol ., 4-4to 4-7, 4-10, E-1 to E-4
Predictor-Corrector, o e o 4 9, 4-10, E-3, E 4, D-20 to D-22
o Runge-Kutta e 46to48 EltoE3 D-18, D-19
solution accuracy e e e e e e s e s e s e e e e e . 4-3
stepsize control i e i i b b e e e e e e e e e e e . 4-2, 4-3
integrator equations . ot e s s e s e s s s e e e s e e E-1lto E-4
INTERP (see INRKPC, ADMNTP)
interpolation of prmted values0 .. e e s s i e e .. 6-4 6-5
ISWTYP . . v v v e v o vt e s s o e e e s e e e w e C-8
*IV oooooo LI) e & & » e & s » = » 'Y * o e » . o e 7'2 7‘3
J
JLINE e o & o o+ " e & o s s s e ° » & o o s e e o & o & s o s ¢ 0 C-lo ,"
job control cards (see control cards) i
JSTART..‘...."....."..'.'l..oc......'.. C'?
K
| KCOUNT. . . & v v v o v e o e v o o e v s s e s s s s e e« 4-9 D-21 to D-22
‘ KFLAG . ¢ v v v o 6 6 s o o o6 o o o o 2o s o 58 e o o o o o oo e e e e e e
| L
1
large simulations ., ¢« . ¢ ¢ v ¢ 4t et b b b e et e e e e F-4, F-5
uNES [] . L] L] . - . . L] - [] Ll L] L] L] L]] L] . - . . L] . L] - - . L) . . L] - L] L]
* M
‘ MAIN (PR@GRAM)
: examples # o o 2 s & e s s e+ e e s e s e e ¢ ¢ o o o o s e 2-7, 6-17
format. e ® & o o o & o @ ® ® & ® e 8 8 e 6 6 e & o & -
when written
: MATADD (subroutine) e s e e . e s s e e s s e e e
1 MATINYV (subroutine) . . . ¢ . ¢« v o v & »+ & . c v e e e
: MATMAT (subroutine) .., c e e e e e e e
matrix equations (see WHELP)
MATSUB (subroutine) . . & v v ¢ 4 v 4 t s o o ¢ ¢ o ¢ o o s 0 o o o o oo
¢ MATZRQ (subroutine) . . « v v v v v v v o v e 6 o o v o s o o o o o oo

J-6

Lwig

INDEX (Continued)

Page

MAXCOL . ¢ v v v v o v o oo
MAXDER . . ¢ v ¢ ¢ o o o . e
MAXMEM ., e e e s e e e s s e s e et s e e e e e e eaa .
*MAXPLOTS Gt et et s s e e s s e e e 6-6,6-7,
MAXSWS e o e s a e s o o o o s s 8 8 s e e e 6 8 s e s 8 s e
3 *METHOD. e
- MF. ¢« ¢« ¢ ¢ v o ¢ o s o« e o o 8 5 s s s e s s e s e 8 e w e e s s s s e e s
MISCEL(commonblock)..............
MQ@VE (subroutine) . . « « « ¢« v v o « « o « & e e s o e s o e o o 3-3, 3.4, H-11
multipleruns.............................F—ltoF-3
MXL ... ¢ e e s s o v s s s s s s e s s s s e e e e e eaee. C-10

MAXCHR * . L] . L] . L] L] ¢ e & 5 o+ o . L .

] o

aavaaaaoaan

[S LN B NNV ISRV N R p o JRV.)

. NALTER e o o 8 o o o s e s o 8 s s s s e s e . e o o s e o s o & C
E NCHNG . ¢ ¢ ¢ v o o o o o o o o o o s 5 o o6 8 38 8 ¢ 8 « o o s 8 s o as . C
J NDISPR v ¢ ¢ o o o & e o o o s s & o s 8 s e s s . 5-16, 5-17, 5- 18, C-
NDISPR(COmmonblock)518,C-
NEGATE (subroutine)« ¢ v o ¢ ¢ ¢ o o o« o ¢ o o o o o o s s+ ¢+« H-1
NEQ (Mmeg). « « v ¢« ¢« « o + & e s e e s e s e s 8 s s s e e e s e . 3-2,7-1 C-
NEVENT. . . .

3 *NEVENT e e e e e e e e s e e e e s e e . 5-1
y Lk NFIRST © v v v v e v v ot ot e oo oo e v a e e C-
- | NHEAD e e e e e e e e e .. C-1
F NLOACAL . . ¢ v o o v v e o o e s s s s C-
- ¥NLOCAL « v v v v v v v o o o o o o o s n o s o o o oaos e v e e . 6-1
i noise inputs c e e s e e e e e e e s e s s e e e e e e 4-
! nonlinearities (see dlsc0ntmu1t1es)

. NOPLDT., . « v ¢ ¢ s v o s s 0 o s s s o s s s s s s s s e sseseeess C-9
F * NOTIFY (subroutine) . e s s s e s s e e 4 e s e e e e e se 5-11, 5-16
- NPAGE . & ¢t i i 6 v o s 4 o s ¢ 6 o 8 a8 s s 0 s e aeesseseessaes C-10
' NPOINT . ¢ . .t vt o v v st ot s st o s ssesenesosssaeee. C€-9
: NT APLL . . i i i i i it e o e s o o o o o o o o o v o s o o oo s oeos C-4

NUMSTP . i i i i i i it ot o o e o o o s o o s o o o o eosssososaesa C-4

S R

@®DES@L (see ESPPC, ESPRK2, ESPRK4, ADAMS)
0UT . L . . L] A4 L . L] . L] . L] L] . * Ld L] . . . L] L] L] L] . L] L4 Ll . . L] C'lo

2 INDEX (Continued)

Page

Outp'lIt e @ ® 8 & 8 o & e e 8 s e 8 ® & e » o e o s s o 0.0000006-1t°6—17

accuracy . . « « .+ .« Gt s e s s e s e s s s e e e e e s e 6-4, 6-5 6-7
alternatives . . . 4 v 4 i 6 v e b e e e e e e e 6-1

data file e e e e e s e s e e s e s e s e e e e 6-13 to 6-17

Braphic & & v v 4 6 6 ettt e e e e e e e e et e e e ee e e e 6-5to 6-11
listing . . . ¢ v 0 v 0 v v v o e s e e s e s e e e e s e 2-16 to 2-19
1n1t1alpr1ntoutexample........ e e s e e . 2-16

. printer plotexamples e e o s« .. 2-18, 2-19
user printoutexamples . ., 0000 ... « o0 .. 2-17

plotted (see graphic)

printed0 .. e e e s e s e e . b6-1tob-5 6-11, 6-12

tape (see data file)

See also *PRINT, *HEADINGS.
OUTPUT (subroutine) e e e s e s s e e e e e e e eae 6-
1 example 2-1
format . . . i L e e e e e e e e e e e e e e . .
Printing from. 0 L L L L e e e e e e e et e e e
whenwritten 0000 o .
2 *QUTPUT & « v v v v v v v oo . c et e .. 6-3

examples 0 0 i s e e L e et e e e e e e e s e e e e e 6-4
OVERLAY¢..o0..
BVERLAYL . . i i it v ot o vt e s e oot o oo oo n e
overlays (plotting) . ¢ & ¢ ¢ ¢ ¢ ¢ ¢ o ¢ 4 o o o o o o o o o o«

from multiple TUns . . ¢ ¢ ¢ ¢ 4 et 4 et e e e e e e e .

PACKER (subroutine) . . & v ¢ ¢ v 4 v o ¢ o o o o o o o s » » et e e e D-

2 2 7-3, 7-4, C-

examples s b e s s e e s s e e e e .. 223, 7-

0 2 -3 L T

N examples 00000 . 2-3, 7

parameters (see *PAR)

'
m«lO‘AO\ b b 0N O

T PARS (commonblock) ¢ttt vttt it ettt eeaa.. C-
PLOT . . . i ittt i it et ittt s e e neeees b6, 6-13 C-1, C-
plotting6-5to6-11,6-13to6-1

accuracy........---........-...-..-..... 6'
. alternatives S
. . controllmgatsw1tcht1mes v 4 s e s s s e s s e s s s e e . 5-17, 5-18
from TAPELL . . .t i v vt i et it ot oo e o ne e .6-13¢t06-16
number of plots L L. . e s e e e e e e e e e e 6-6
overlays from different runs ,,0 00 v 0. ..

J-8

storing plotdata

usmg *GRAPH
using Program ESPPLQT .

cards writtenby
howused
sequence of events .,
termination during

INDEX (Continued)

PRECOMP (Program) . . . ¢ v ¢ v o o o o o « o »

g 2 3 .

PRINT(1) . ¢ v v v v o v v v o et t o s o o s o

examples e o e e e s

*PRINT 6 e et e s s s e e e e .
examples ., o e e b e e s e e e e .

printing e e et e e e « v e e e
ACCUTACY & o ¢ o o o o o o s s o o o s o s s &
controlling at switch tlmes e e e e b e e e s e e e e e e e
in*ICCOMP 4000 .

in *DERIVS

inMAIN . . . ¢ 0 it v v ettt v o o0

in *QUTPUT+ ¢ v v v..
user-formatted

print interval (see HP, hprinti)
printout, debugging

e . .

example ,
READIN (common block)
READIT (subroutine)
reserved names ., . . . o o . .
¥RETURN .+ ¢ v 4 ¢ ¢ o ¢ 0 o o o &
RKCONT (common block)

format and contents . ., . . .

USE ., 4 o o ¢ o ¢ o o o s s o o
*RUN e e s s s e e b e s e e
¥RUNC & 4 v v v v 6 o 0 s 6 o o
RUNGE-KUTTA integration . . ,
run-time routines. 0

0
)

[
O
]

P
[N

B of)
e s s s s e s s e e s e e e s e oa 4-7
C v s e e s e s e e e e e 1-1 7-2
D 1
...........-....4-61:04—8
t et s e s s s s s e ees D-7toD-9

INDEX (Continued)

*SAMESIZE
fixed dimension .,
example

variable dimension.
examples
SCALE . . ¢ ¢ v ¢ ¢ o s 0 o s s s
SCAMAT (subroutine) . . .

SCRI1I(200) ., . &« ¢ v o o ¢ o o o o »
SECNZR (subroutine)
SIZEXXYY &« v ¢ ¢ ¢ ¢ s o ¢ s o o
SKPFIL (subroutine) . . .
SMALL .

stacked runs 0 ¢ 0 e e e . e

stepsize
control

by Adams

by Predictor-Corrector,

by Runge - Kutta

by user . .

initial selection e e e e .

relationship to print interval

STFPAR (common block)

STOP

S 2)

STPCON (common block).,

format and contents .,

use

subroutines (see specific names)

SWCHi

examples . , .,
SWDBUG . . 4 v ¢ ¢ ¢ v o o o o«
SWHPAR (common block).
SWINIT (subroutine)
SWINPT (subroutine)
examples
format ¢ 0 ..
user-written .,
¥SWITCHES v v v v o ¢ o &
SWMi . 4 v v v ¢ ¢ o ¢ o o o 0 o
SWMEM . . & ¢ v v v ¢t o s o o o
SWMEMI(i,4) . . . ¢ ¢« s o ¢ o o &

e & o 8 e » & e v e+ & »

¢ o e
o« o o
. o e
« o .
« o o
° e e
. o .
« o
. e e

« o

o o o

e o

« o e

¢ o o
LY

s » » = s ® ® e * & s =

« s e+ s s s

H-16, H-18,

e« o e o

(B

Page

H-3,

...« F-1to

e e .. 4-2,
:--o 6.'49

5-9,

5.2, 5-12 to

5.7, 5-14,

5-14, 5-15,

H-4
H-4

H-16 to H-19
H-19, H-20

6-9

H-11

4-3

HLOOwO Qo
1
U0, -gniv

r DO w
[|]
B O~ o b O 00 00 W

5

"
1 O
—1

5.-14
5-15

Cc-9
5-17

INDEX (Continued)

Page

ASSWMEM , ., 5-5to05-10, 5-12 to 5-18

defininginputs 4 4 v v 4 s e e s s 4 e 0. o5-6, 5-12t05-14
definingoutput ¢ ¢ v e e .. 5-7 5-14, 5-15
defining characteristiecs v ¢ v v v v ¢ o s o o4 . o5-7, 5-8, 5-9
howitworks ¢ v o v v v v o v v G« s+ + s s s s s .. b-15to 5-18
FOSWMEMOCNT . L v . v v 6 v v o o s s o o o s o o s o o o et s s e e e . 5-14

. *SWMEMDATA | . ., . .t ¢ v s v e o v s t o s s o o o oo+ s+5-6 5-Tto5-9
SWMEMN (subroutine) . « . . ¢« v ¢« v ¢ ¢ « o s+ o« + « o o o « . 5-6, 5-12 to 5-14
exampleofdummy 000 s e e e e ... 2-10

o o o o - 1 O D-7
user-written00 0. .. e e e s e s e s e e e e e . b-14

- FSWMEMSET . . 4 . v v ¢ 6 v o v o o s o o v a o v o v e+ e+ e .. 5-6,5-10
g SWSET Y oy -
SWTCH() v« o « « ¢ 4 ¢ o 4 ¢ e s o o s s s o o s o« . 5-3,56-14, 5-15, 5-17, C-8

. examples L L L s e e e e et e et e e e e e et e e e e s 5-4
FSWTCH . . v v v v v e v v e . . e e e s 5-2 to 5-5, 5-12 to 5-18

defining inputs 5-2 to 5-4, 5-12 to 5-14

defining output . . ., ¢« 4 e s s e e e . b5-3,5-4 5-14, 5-15

examples, e v s e o 4 6 ¢ e e . . 2-3,5-3 5-4

howitworks . . ¢« . v v v v v v v o o e e e e e e e -15to 5-18

SWTCHE (subroutine) . . . « ¢ v v v ¢ ¢ ¢« v o o e e e e e e e D-9

SWTCHS (common block) . & . & & v v v v v v v e e o o o v o o v .. C-8, C-9

00005-03-2

i e e e e e e e , C-1
i TO . & v i e e e e e e v e T OF X
; TAPELILl ¢ue ' eeueoeas.b6-7 6-13, B-4, B-5 D-2, D-3
TAPE12Z .,4 .4 .t seeeoea. 1-6, B-4, B-5, D-2, D-3, D-5, F-2

TAPEIS ¢ ..o e e s s e e s e e e e e e ¢« v+ .. D=2, D-3

TERMOCH . 4 0 it 6 v o e 4 e o 4 o 6 o o s o o s s s o v o o o a0 o oo o C-6

a def., length, and bloCK. v + v v v v 4 v o v v o v v v st s e e, C-3
| HFTICKPLOTS © v v 4 v v v v o s e e ot e oot oo o noneeneeee. 6-14
‘ time, start and stop 4 s b e b v e s e e e e e e e e 11, T2
TIMEIN (subroutine) ¢« v ¢ ¢ v ¢ 4 4 v v ¢ o o 0 o o o o v o o s o s D-9

- TIMEQUT (subroutine) . . . « v v ¢« v ¢ ¢« v ¢ ¢ ¢+ « o s s oo s v s s e+ D-9
& 0 P O o U
' ¥TITLE , o 0 0 v v v v 0 0 v . et s v e e st e s s e s e e e s ee e 7-8
5 example . . 4 s i s i it e et e e e et e e e e e e e e e e e 2-5
’ TODAY i i i i i v i et et ottt sttt ettt et ese. C-10
‘. Tp ¢ & 8 & & & 8 4 P S & ¢ P B B 6 T B & & B * & B 0 B * O B 5 * T S 8 v e » C-3

J-11

h S—————— e v | et =t Sm e % i s e spr—— ——_—r— s

INDEX (Concluded)

Page

TRNSMUL (subroutine€) . . « v ¢ v ¢ « o ¢ « ¢ o ¢ o o ¢« o ¢ o 25 s .+ . H-11
TRNSPS (subroutine) T T s I et
TYPE t) (t,){5) « . .o oo v v v oo oo n e e e e ... 6-9 6-10

UNIPI (common Block) v v v v v v v e o 4 6 v v o o s o o o o o s o s o o C-9
UNIP2 (commonblock) . . . v v v v v v v v v v o o v o v e s e e e ... C-10

VAIMEM e e e e e e e e e e e e e e e e . ..
VALUES . v i i v i v b e e ettt o e e e e e v
A N EVENTS . & v v v v e e et e et e e e e e e

in SWINPT ,

vt
'
o 4 e =
O\‘N —
(S0, S]
) aaoon
b s e])
O B =t

-

a’

N SWMEMN &+ v v v v e s ee e e e e e 526, 52
variables, alphabetical list . . c v e e s s e e e e e e e « o e e C
VPL(DT................ S ¢ e ® 4 s s s e * & ¢ & 2 s » C'

WHELP v i it v et s 4t o oo st o o v oo e eew s H-1toH-21
data storage . . . ¢« ¢ . v v v b e e e e e e e e e e+ s+« . H-15 H-15
declaring variables

fixed dimensions ., , . ¢ ¢ . ¢ s v 4 e e e ... H-2toH-7
variable dimensions+ ... H-16to H-19
defining derivatives in ., e o s e s s s s 4. 3-3, 3-4
how itworks'v e« s e e e . o H-1 H-2
matrix routines ., .., e s s s s e e a s . H-11
operator symbols . ., G« e e 4 e e s s e s e s e H-I10
packingdata ., © e e e+ e e .. H-19 to H-21
special features ., 0 i it it i s e e e e ... H-12
writing WHELP expressions. . « . « « « « ¢+ « v « + « » » . . H-8toH-13
See also *IDECLARE, *SAMESIZE, *INF@QRM .
Wilkinson's method i i i it i e ettt 5-16
WLPTQF (subroutine) e ¢+ v v s e evuoeseeeo. H-19to H-21

Y

» Y S+ s e s s e s s e e e s e e s st s e e e st e e a3-1t03-7 C-
See also *IV, .
YPRNT(100) . o v i it i e e e e e o e e b o e o s oot e n e e e

